Gentoo Websites Logo
Go to: Gentoo Home Documentation Forums Lists Bugs Planet Store Wiki Get Gentoo!
Bug 41771 - g++ Internal compiler error in c_expand_expr, at c-common.c:3714
Summary: g++ Internal compiler error in c_expand_expr, at c-common.c:3714
Status: RESOLVED UPSTREAM
Alias: None
Product: Gentoo Linux
Classification: Unclassified
Component: [OLD] GCC Porting (show other bugs)
Hardware: x86 Linux
: High normal
Assignee: Please assign to toolchain
URL:
Whiteboard:
Keywords:
Depends on:
Blocks:
 
Reported: 2004-02-16 03:08 UTC by Damjan Jovanovic
Modified: 2005-07-15 07:39 UTC (History)
0 users

See Also:
Package list:
Runtime testing required: ---


Attachments
The header file used by Matrix.cpp (Matrix.h,9.38 KB, text/plain)
2004-02-27 02:05 UTC, Damjan Jovanovic
Details
The file which causes the internal compiler error when compiled (Matrix.cpp,16.66 KB, text/plain)
2004-02-27 02:07 UTC, Damjan Jovanovic
Details

Note You need to log in before you can comment on or make changes to this bug.
Description Damjan Jovanovic 2004-02-16 03:08:16 UTC
I have Gentoo linux 1.4 (not sure about rc), running on a Pentium 200 MMX, built from stage 1, with GCC 3.2.2 (which has built my entire system, including Gnome, and everything works fine).

I tried compiling my own C++ program with "g++ Matrix.cpp -o matrixtest", and got the following:

Matrix.h: In static member function `static Matrix<T>
   Matrix<T>::Householder(Matrix<T>) [with T = float]':
Matrix.cpp:702:   instantiated from here
Matrix.h:264: Internal compiler error in c_expand_expr, at c-common.c:3714
Please submit a full bug report,
with preprocessed source if appropriate.
See <URL:http://bugs.gentoo.org/> for instructions.

I eventually managed to get the program compiled by moving the declaration of the class "SizeMismatch" further up in the program (almost to the beginning), and changing "throw SizeMismatch;" to "throw SizeMismatch();". But still, the compiler should tell you "SizeMismatch undeclared", not "internal error"...

Matrix.h and Matrix.cpp follow.

Matrix.h contents:
(cut here)------------------------------------------------------
typedef unsigned long u32;
typedef signed long s32;

// Forward declaration
template<typename T>
class Matrix;

// Expression template classes:

template<typename T, typename Left, typename Right>
class MatrixAddPair
{
	const Left   &left;
	const Right  &right;

  public:
	MatrixAddPair(const Left &l, const Right &r) : left(l), right(r) {}

	T operator()(u32 i, u32 j) const {
		return left(i,j) + right(i,j);
	}
	u32 Columns() const {return left.Columns();}
	u32 Rows() const {return left.Rows();}
};

template<typename T, typename Left, typename Right>
class MatrixSubPair
{
	const Left   &left;
	const Right  &right;

  public:
	MatrixSubPair(const Left &l, const Right &r) : left(l), right(r) {}

	T operator()(u32 i, u32 j) const {
		return left(i,j) - right(i,j);
	}
	u32 Columns() const {return left.Columns();}
	u32 Rows() const {return left.Rows();}
};

template<typename T, typename Left, typename Right>
class MatrixMulPair
{
	const Left   &left;
	const Right  &right;

  public:
	MatrixMulPair(const Left &l, const Right &r) : left(l), right(r) {}

	T operator()(u32 i, u32 j) const {
		T sum = 0;
		const u32 rows = right.Rows();
		for (u32 k = 0; k < rows; k++)
			sum += left(i,k)*right(k,j);
		return sum;
	}
	u32 Columns() const {return right.Columns();}
	u32 Rows() const {return left.Rows();}
};

template<typename T, typename M, typename Unused=int>
class MatrixMulScalarPair
{
	const M	 &matrix;
	const T   scalar;

  public:
	MatrixMulScalarPair(const M &m, T t) : matrix(m), scalar(t) {}

	T operator()(u32 i, u32 j) const {
		return matrix(i,j)*scalar;
	}
	u32 Columns() const {return matrix.Columns();}
	u32 Rows() const {return matrix.Rows();}
};


// Operators

//Addition
template<typename T,
		 typename L1, typename L2,
		 typename R1, typename R2,
		 template<typename,typename,typename> class Left,
		 template<typename,typename,typename> class Right>
MatrixAddPair<T, Left<T,L1,L2>, Right<T,R1,R2> >
inline operator+(const Left<T,L1,L2> &l, const Right<T,R1,R2> &r)
{
	return MatrixAddPair<T, Left<T,L1,L2>, Right<T,R1,R2> >   (l,r);
}

template<typename T,
		 typename L1, typename L2,
		 template<typename,typename,typename> class Left>
MatrixAddPair<T, Left<T,L1,L2>, Matrix<T> >
inline operator+(const Left<T,L1,L2> &l, const Matrix<T> &r)
{
	return MatrixAddPair<T, Left<T,L1,L2>, Matrix<T> >   (l,r);
}

template<typename T,
		 typename R1, typename R2,
		 template<typename,typename,typename> class Right>
MatrixAddPair<T, Matrix<T>, Right<T,R1,R2> >
inline operator+(const Matrix<T> &l, const Right<T,R1,R2> &r)
{
	return MatrixAddPair<T, Matrix<T>, Right<T,R1,R2> >   (l,r);
}

template<typename T>
MatrixAddPair<T, Matrix<T>, Matrix<T> >
inline operator+(const Matrix<T> &l, const Matrix<T> &r)
{
	return MatrixAddPair<T, Matrix<T>, Matrix<T> >   (l,r);
}

// Subtraction
template<typename T,
		 typename L1, typename L2,
		 typename R1, typename R2,
		 template<typename,typename,typename> class Left,
		 template<typename,typename,typename> class Right>
MatrixSubPair<T, Left<T,L1,L2>, Right<T,R1,R2> >
inline operator-(const Left<T,L1,L2> &l, const Right<T,R1,R2> &r)
{
	return MatrixSubPair<T, Left<T,L1,L2>, Right<T,R1,R2> >   (l,r);
}

template<typename T,
		 typename L1, typename L2,
		 template<typename,typename,typename> class Left>
MatrixSubPair<T, Left<T,L1,L2>, Matrix<T> >
inline operator-(const Left<T,L1,L2> &l, const Matrix<T> &r)
{
	return MatrixSubPair<T, Left<T,L1,L2>, Matrix<T> >   (l,r);
}

template<typename T,
		 typename R1, typename R2,
		 template<typename,typename,typename> class Right>
MatrixSubPair<T, Matrix<T>, Right<T,R1,R2> >
inline operator-(const Matrix<T> &l, const Right<T,R1,R2> &r)
{
	return MatrixSubPair<T, Matrix<T>, Right<T,R1,R2> >   (l,r);
}

template<typename T>
MatrixSubPair<T, Matrix<T>, Matrix<T> >
inline operator-(const Matrix<T> &l, const Matrix<T> &r)
{
	return MatrixSubPair<T, Matrix<T>, Matrix<T> >   (l,r);
}

// Multiplication
template<typename T,
		 typename L1, typename L2,
		 typename R1, typename R2,
		 template<typename,typename,typename> class Left,
		 template<typename,typename,typename> class Right>
MatrixMulPair<T, Left<T,L1,L2>, Right<T,R1,R2> >
inline operator*(const Left<T,L1,L2> &l, const Right<T,R1,R2> &r)
{
	return MatrixMulPair<T, Left<T,L1,L2>, Right<T,R1,R2> >   (l,r);
}

template<typename T,
		 typename L1, typename L2,
		 template<typename,typename,typename> class Left>
MatrixMulPair<T, Left<T,L1,L2>, Matrix<T> >
inline operator*(const Left<T,L1,L2> &l, const Matrix<T> &r)
{
	return MatrixMulPair<T, Left<T,L1,L2>, Matrix<T> >   (l,r);
}

template<typename T,
		 typename R1, typename R2,
		 template<typename,typename,typename> class Right>
MatrixMulPair<T, Matrix<T>, Right<T,R1,R2> >
inline operator*(const Matrix<T> &l, const Right<T,R1,R2> &r)
{
	return MatrixMulPair<T, Matrix<T>, Right<T,R1,R2> >   (l,r);
}

template<typename T>
MatrixMulPair<T, Matrix<T>, Matrix<T> >
inline operator*(const Matrix<T> &l, const Matrix<T> &r)
{
	return MatrixMulPair<T, Matrix<T>, Matrix<T> >   (l,r);
}

// Matrix * scalar
template<typename T,
		 typename L1, typename L2,
		 template<typename,typename,typename> class Left>
MatrixMulScalarPair<T, Left<T,L1,L2> >
inline operator*(const Left<T,L1,L2> &l, T r)
{
	return MatrixMulScalarPair<T, Left<T,L1,L2> >   (l,r);
}

template<typename T>
MatrixMulScalarPair<T, Matrix<T> >
inline operator*(const Matrix<T> &l, T r)
{
	return MatrixMulScalarPair<T, Matrix<T> >   (l,r);
}

// Scalar * matrix
template<typename T,
		 typename R1, typename R2,
		 template<typename,typename,typename> class Right>
MatrixMulScalarPair<T, Right<T,R1,R2> >
inline operator*(T r, const Right<T,R2,R2> &l)
{
	return MatrixMulScalarPair<T, Right<T,R1,R2> >   (l,r);
}

template<typename T>
MatrixMulScalarPair<T, Matrix<T> >
inline operator*(T r, const Matrix<T> &l)
{
	return MatrixMulScalarPair<T, Matrix<T> >   (l,r);
}

// The matrix class
template<typename T>
class Matrix
{
    u32  rows;
    u32  columns;
    T    **entry;
    
  public:
    // Constructors
    Matrix(const Matrix&);
    Matrix(u32 newRows, u32 newColumns);

    // Comparison and assignment
	template<typename RHS>
    Matrix&       operator=(const RHS&);
	template<typename RHS>
    bool          operator==(const RHS&) const;

	// Mutating operators on this matrix
    Matrix&       operator+=(const Matrix&);
    Matrix&       operator-=(const Matrix&);
    Matrix&       operator*=(const T);

    // Inlines
	T operator()(u32 i, u32 j) const {
		return entry[i][j];
	}
    T& operator()(u32 i, u32 j) {
        return entry[i][j];
    }
    u32    Columns() const {return columns;}
    u32    Rows() const {return rows;}

	// Static methods

	// Householder matrix for column vector x
	static Matrix Householder(Matrix x) {
		if (x.Columns() != 1) throw SizeMismatch;
		T alpha = sqrt((x.Transposed() * x)(0,0));
		if (x(0,0) >= 0) alpha = -alpha;
		x(0,0) -= alpha;
		x *= 1/sqrt((x.Transposed() * x)(0,0));
		Matrix M(x.Columns(), x.Columns());
		M.LoadIdentity();
		M = M - 2.0f*x*x.Transposed();
		return M;
	}

    // Getters:

    // Adjoint
    Matrix Adjoint() const;

    // Determinant (by Gaussian elimination)
    T      Det() const;

    // Determinant (by Laplace expansion - slow)
    T      Det2() const;

    // Displays using C++ streams
    void   Display() const;

    // Is it diagonally dominant?    
    bool   IsStrictlyDiagonallyDominant() const;

    // l1 norm
    T      L1Norm() const;

    // l infinity norm
    T      LInfNorm() const;

    // Submatrix without a row and column
    Matrix SubmatrixWithout(u32 row, u32 col) const;

    // Returns the transpose
    Matrix Transposed() const;



    // Setters

    // Divides row by scalar
    void DivideRow(u32, T);

    // Inverts using Gauss-Jordan reduction with
    // partial pivoting
    bool Invert();
    
    // Inverts using 1/det(a)*Adj(A)
    bool Invert2();
    
    // Makes matrix into I
    void LoadIdentity();
    
    // Fills with 0's
    void LoadZeroes();

    // Swaps 2 rows
    void SwapRows(u32, u32);

    // Row subtraction
    void SubRows(u32 source, T multiple, u32 dest,
                 u32 start, u32 end);

    // Tranposes the matrix
    void Transpose();

    ~Matrix();
};

class SizeMismatch{};

// Functions

// Gauss-Seidel solution of STRICTLY
// DIAGONALLY DOMINANT matrix, with error less
// than err, in at most maxIterations iterations
template<typename T>
void GaussSeidel(const Matrix<T> &A, const Matrix<T> &b,
                 Matrix<T> &x, T err,
                 u32 maxIterations = 100);

// Gives the in-place LU decomposition of A
// with rowSwap having at least as many elements as
// A's rows. Returns true on success, false otherwise.
template<typename T>
bool LUDecompose(Matrix<T> &A, u32 rowSwap[]);

// Solves for the column vector b, in place, using
// the LU decomposition of A given by LUDecompose()
template<typename T>
void LUSolve(const Matrix<T> &A, Matrix<T> &b,
             const u32 rowSwap[]);

// Positive integer power of a matrix
template<typename T>
Matrix<T> pow(const Matrix<T> &A, u32 exponent);

// Solution of Ax = b by Gaussian elimination.
// Matrix A may be any size that matches b.
// A and b are always changed.
// If unique solution, Solve() return 1,
// b is changed to x.
// If no solution, Solve() return 0.
// If infinite solutions, basis contains vectors
// of the form form
// [x1 x2 x3 x4 ... xn], so that
// x = x1 + x2*s + x3*t + ... + xn*u,
// x's column vectors; s,t...u parameters;
// n is returned.
template<typename T>
u32 Solve(Matrix<T> &A, Matrix<T> &b, Matrix<T> *basis = 0);

(end of Matrix.h)-------------------------------------------------------

Matrix.cpp
(cut here)--------------------------------------------------------------
#include <iostream>
#include "Matrix.h"

#define abs(x) ((x) >= 0 ? (x) : (-(x)))

template <typename T> 
Matrix<T>::Matrix(u32 newRows, u32 newColumns)
{
    if ((newRows == 0) || (newColumns == 0))
        throw SizeMismatch();
    rows = newRows;
    columns = newColumns;
    entry = new T*[rows];
    for (u32 i = 0; i < rows; i++)
    {
        entry[i] = new T[columns];
        for (u32 j = 0; j < columns; j++)
            entry[i][j] = 0;
    }
}

template <class T>
Matrix<T>::Matrix(const Matrix<T>& m)
{
    rows = m.rows;
    columns = m.columns;
    entry = new T*[rows];
    for (u32 i = 0; i < rows; i++)
    {
        entry[i] = new T[columns];
        for (u32 j = 0; j < columns; j++)
            entry[i][j] = m.entry[i][j];
    }
}

template <class T> 
template <typename RHS>
Matrix<T>& Matrix<T>::operator=(const RHS& rhs)
{
    if (rhs.Rows() != rows) {
        for (u32 i = 0; i < rows; i++)
            delete[] entry[i];
        delete[] entry;
        columns = rhs.Columns();
        rows = rhs.Rows();
        entry = new T*[rows];
        for (u32 i = 0; i < rows; i++)
            entry[i] = new T[columns];
    }
    if (rhs.Columns() != columns) {
        columns = rhs.Columns();
        for (u32 i = 0; i < rows; i++) {
            delete[] entry[i];
            entry[i] = new T[columns];
        }
    }
    for (u32 i = 0; i < rows; i++)
        for (u32 j = 0; j < columns; j++)
            entry[i][j] = rhs(i,j);
    return(*this);
}

template <class T>
template <typename RHS>
bool Matrix<T>::operator==(const RHS& rhs) const
{
    if ((rhs.Rows() != rows) || (rhs.Columns() != columns))
        return false;
    for (u32 i = 0; i < rows; i++)
        for (u32 j = 0; j < columns; j++)
            if (entry[i][j] != rhs(i,j)) return false;
    return true;
}

template <class T> 
Matrix<T>& Matrix<T>::operator+=(const Matrix<T>& m)
{
    if ((m.Rows != rows) || (m.columns != columns))
        throw SizeMismatch();
    for (u32 i = 0; i < rows; i++)
        for (u32 j = 0; j < columns; j++)
            entry[i][j] += m.entry[i][j];
    return(*this);
}

template <class T> 
Matrix<T>& Matrix<T>::operator-=(const Matrix<T>& m)
{
    if ((m.rows != rows) || (m.columns != columns))
        throw SizeMismatch();
    for (u32 i = 0; i < rows; i++)
        for (u32 j = 0; j < columns; j++)
            entry[i][j] -= m.entry[i][j];
    return(*this);
}

template <class T> 
Matrix<T>& Matrix<T>::operator*=(const T scalar)
{
    for (u32 i = 0; i < rows; i++)
        for (u32 j = 0; j < columns; j++)
            entry[i][j] *= scalar;
    return(*this);
}

template<class T>
Matrix<T> Matrix<T>::Adjoint() const
{
    if (rows != columns) throw SizeMismatch();
    Matrix<T> Adj(rows, columns);
    T sign;
    for (u32 i = 0; i < rows; i++)
    {
        if (i & 1)
            sign = -1;
        else
            sign = 1;
        for (u32 j = 0; j < columns; j++)
        {
            Adj(j,i) = sign*SubmatrixWithout(i,j).Det();
            sign = -sign;
        }
    }
    return Adj;
}

template<class T>
T Matrix<T>::Det() const
{
    if (rows != columns)
        throw SizeMismatch();

    Matrix<T> A = *this;
    u32 i,j;
    T pivot, determinant = 1;
    u32 pivotRow;
    
    // Gaussian elimination into upper triangular form
    for (j = 0; j < A.Columns(); j++)
    {
        pivot = abs(A(j,j));
        pivotRow = j;
        // Find the biggest partial pivot
        for (i = j+1; i < A.Rows(); i++)
            if (abs(A(i,j)) > pivot)
            {
                pivot = abs(A(i,j));
                pivotRow = i;
            }
        // Is the matrix singular?
        if (pivot == 0)
            return false;
        else
        {
            if (pivotRow != j)
            {
                A.SwapRows(j, pivotRow);
                determinant = -determinant;
            }

            // Reduce entries below pivot to 0            
            for (i = j+1; i < A.Rows(); i++)
            {
                pivot = A(i,j) / A(j,j);
                A.SubRows(i, pivot, j, j+1, A.Columns());
                A(i,j) = pivot;
            }
        }
    }
    
    for (i = 0; i < A.Rows(); i++)
        determinant *= A(i,i);
    return determinant;
}

template <class T>
T Matrix<T>::Det2() const
{
    if (rows != columns)
        throw SizeMismatch();
    if (rows == 1)
        return entry[0][0];
    else if (rows == 2)
        return    entry[0][0]*entry[1][1]
                - entry[0][1]*entry[1][0];
    else
    {
        T sign = 1;
        T answer = 0;
        for (u32 i = 0; i < rows; i++)
        {
            answer += sign*entry[0][i]*SubmatrixWithout(0,i).Det();
            sign = -sign;
        }
        return answer;
    }
}

template <class T> 
void Matrix<T>::Display() const
{
    using namespace std;
    for (u32 i = 0; i < rows; i++)
    {
        for (u32 j = 0; j < columns; j++)
            cout << entry[i][j] << " ";
        cout << endl;
    }
}

template <class T> 
void Matrix<T>::DivideRow(u32 i, T value)
{
    for (u32 k = 0; k < columns; k++)
        entry[i][k] /= value;
}

template<class T>
void GaussSeidel(const Matrix<T> &A, const Matrix<T> &b,
                 Matrix<T> *q,
                 T err, u32 maxIterations)
{
    Matrix<T> &x = *q;
    u32 i,j;
    T sum, error, maxError;
    u32 iteration = 0;
    do
    {
        maxError = 0;
        for (i = 0; i < A.Rows(); i++)
        {
            sum = 0;
            for (j = 0; j < i; j++)
                sum += x(j,0)*A(i,j);
            for (j++; j < A.Columns(); j++)
                sum += x(j,0)*A(i,j);
            error = x(i,0);
            x(i,0) = (b(i,0)-sum) / A(i,i);
            error = abs(x(i,0) - error);
            if (error > maxError)
                maxError = error;
        }
        iteration++;
    } while ((iteration < maxIterations) &&
             (maxError > err));
}

template <class T>
bool Matrix<T>::Invert()
{
    if (rows != columns) throw SizeMismatch();
    
    s32 i, j, pivotRow;
    T pivot;
    
    // Keep track of row swaps
    u32 rowPosition[rows];
        
    // Gaussian elimination into upper triangular form
    for (j = 0; j < columns; j++)
    {
        pivot = abs(entry[j][j]);
        pivotRow = j;
        // Find the biggest partial pivot
        for (i = j+1; i < rows; i++)
            if (abs(entry[i][j]) > pivot)
            {
                pivot = abs(entry[i][j]);
                pivotRow = i;
            }
        // Is the matrix singular?
        if (pivot == 0)
            return false;
        else
        {
            if (pivotRow != j)
                SwapRows(j, pivotRow);
            rowPosition[j] = pivotRow;

            // Divide row
            pivot = entry[j][j];
            entry[j][j] = 1.0;
            DivideRow(j, pivot);
            
            // Reduce entries below pivot to 0            
            for (i = j+1; i < rows; i++)
            {
                pivot = entry[i][j];
                entry[i][j] = 0.0;
                SubRows(i, pivot, j, 0, columns);
            }
            
            // Reduce entries above pivot to 0
            for (i = j-1; i >= 0; i--)
            {
                pivot = entry[i][j];
                entry[i][j] = 0.0;
                SubRows(i, pivot, j, 0, columns);
            }
        }
    }

    // Fix columns in the inverse
    for (j = columns-1; j >= 0; j--)
        for (i = rows-1; i >= 0; i--)
            if (j != rowPosition[j])
                Swap(entry[i][j], entry[i][rowPosition[j]]);
    return true;
};

template <class T>
bool Matrix<T>::Invert2()
{
    T determinant = Det();
    if (determinant == 0)
        return false;
    else
    {
        Matrix<T> A = Adjoint();
        *this = A*(1.0/determinant);
        return true;
    }
}

template <class T>
bool Matrix<T>::IsStrictlyDiagonallyDominant() const
{
    u32 i,j;
    T sum;
    for (i = 0; i < rows; i++)
    {
        sum = 0;
        for (j = 0; j < i; j++)
            sum += abs(entry[i][j]);
        for (j++; j < columns; j++)
            sum += abs(entry[i][j]);
        if (abs(entry[i][i]) <= sum)
            return false;
    }
    return true;
}

template <class T> 
T Matrix<T>::L1Norm() const
{
    T *sums = new T[columns];
    for (u32 i = 0; i < columns; i++)
        sums[i] = 0;
    for (u32 i = 0; i < columns; i++)
        for (u32 j = 0; j < rows; j++)
            sums[i] += abs(entry[j][i]);
    T max = sums[0];
    for (u32 i = 0; i < columns; i++)
        if (sums[i] > max) max = Sums[i];
    delete[] sums;
    return max;
}

template <class T> 
T Matrix<T>::LInfNorm() const
{
    T *sums = new T[rows];
    for (u32 i = 0; i < rows; i++)
        sums[i] = 0;
    for (u32 i = 0; i < rows; i++)
        for (u32 j = 0; j < columns; j++)
            sums[i] += abs(entry[i][j]);
    T max = sums[0];
    for (u32 i = 0; i < rows; i++)
    if (sums[i] > max) max = sums[i];
    delete[] sums;
    return max;
}

template <class T> 
void Matrix<T>::LoadIdentity()
{
    if (rows == columns)
    {
        for (u32 i = 0; i < rows; i++)
            for (u32 j = 0; j < columns; j++)
                if (i == j)
                    entry[i][j] = 1;
                else
                    entry[i][j] = 0;
    }
    else
        throw SizeMismatch();
}

template <class T> 
void Matrix<T>::LoadZeroes()
{
    for (u32 i = 0; i < rows; i++)
        for (u32 j = 0; j < columns; j++)
            entry[i][j] = 0;
}

template<class T>
bool LUDecompose(Matrix<T> &A, u32 rowSwap[])
{
    if (A.Rows() != A.Columns())
        throw SizeMismatch();

    s32 i, j, pivotRow;
    T pivot;

    for (i = 0; i < A.Rows(); i++)
        rowSwap[i] = i;

    // Gaussian elimination into upper triangular form
    for (j = 0; j < A.Columns(); j++)
    {
        pivot = abs(A(j,j));
        pivotRow = j;
        // Find the biggest partial pivot
        for (i = j+1; i < A.Rows(); i++)
            if (abs(A(i,j)) > pivot)
            {
                pivot = abs(A(i,j));
                pivotRow = i;
            }
        // Is the matrix singular?
        if (pivot == 0)
            return false;
        else
        {
            if (pivotRow != j)
                A.SwapRows(j, pivotRow);
            rowSwap[j] = pivotRow;

            // Reduce entries below pivot to 0            
            for (i = j+1; i < A.Rows(); i++)
            {
                pivot = A(i,j) / A(j,j);
                A.SubRows(i, pivot, j, j+1, A.Columns());
                A(i,j) = pivot;
            }
        }
    }
    return true;
}

template<class T>
void LUSolve(const Matrix<T> &A,
             Matrix<T> &b,
             const u32 * const rowSwap)
{
    if ((A.Columns() != b.Rows()) || (b.Columns() != 1))
        throw SizeMismatch();

    s32 i,j;
    T sum;

    // Swap rows
    for (i = 0; i < b.Rows(); i++)
        b.SwapRows(i, rowSwap[i]);

    // Solve Ly = b
    for (i = 0; i < b.Rows(); i++)
    {
        sum = 0;
        for (j = 0; j < i; j++)
            sum += b(j,0)*A(i,j);
        b(i,0) -= sum;
    }

    // Solve Ux = y
    for (i--; i >= 0; i--)
    {
        sum = 0;
        for (j = i+1; j < A.Columns(); j++)
            sum += A(i,j)*b(j,0);
        b(i,0) = (b(i,0)-sum) / A(i,i);
    }
}

template<class T>
Matrix<T> pow(const Matrix<T> &A, u32 exponent)
{
    if (A.Rows() != A.Columns())
        throw SizeMismatch();
    if (exponent == 0)
    {
        Matrix<T> I(A.Rows(), A.Rows());
        I.LoadIdentity();
        return I;
    }
    Matrix<T> B = A;
    while (exponent != 1)
    {
        B = B*B;
        if ((exponent & 1) != 0)
            B = B*A;
        exponent >>= 1;
    }
    return B;
}

template<class T>
u32 Solve(Matrix<T> &A, Matrix<T> &b, Matrix<T> *basis)
{
    if ((A.Rows() != b.Rows()) || (b.Columns() != 1))
        throw SizeMismatch();
    // Current row and column
    s32 i = 0, j = 0;
    // Counter
    s32 k;
    T pivot;
    s32 pivotRow;
    // Gaussian elimination into upper triangular form
    do
    {
        pivot = abs(A(i,j));
        pivotRow = i;
        // Find the biggest partial pivot, if any
        for (k = i+1; k < A.Rows(); k++)
            if (abs(A(k,j)) > pivot)
            {
                pivot = abs(A(k,j));
                pivotRow = k;
            }
        // Is there a pivot?
        if (pivot == 0)
            j++;
        else
        {
            A.SwapRows(i, pivotRow);
            b.SwapRows(i, pivotRow); 
            // Reduce entries below pivot to 0
            for (k = i+1; k < A.Rows(); k++)
            {
                b(k,0) -= A(k,j)/A(i,j)*b(i,0);
                A.SubRows(k, A(k,j)/A(i,j), i, j+1, A.Columns());
                A(k,j) = 0;
            }
            i++;
            j++;
        }
    } while ((j < A.Columns()) && (i < A.Rows()));

    // Count the number of zero rows
    u32 zeroRows = A.Columns() - i;
    
    if (zeroRows == 0) // Unique solution: find it
    {
        // Back-substitute
        T sum;
        for (i--; i >= 0; i--)
        {
            sum = 0;
            for (j = i+1; j < A.Columns(); j++)
                sum += A(i,j)*b(j,0);
            b(i,0) = (b(i,0) - sum)/A(i,i);
        }
        // Fix the size of b, if necessary
        if (b.Rows() > A.Columns())
        {
            Matrix<T> c(A.Columns(), 1);
            for (k = 0; k < A.Columns(); k++)
                c(k,0) = b(k,0);
            b = c;
        }
        return 1;
    }
    else // No solution or infinite solutions
    {
        // Check if there is no solutions
        for (k = i; k < A.Rows(); k++)
            if (b(k,0) != 0) return 0;
        // There is infinite solutions: find them
        if (basis == 0)
            return zeroRows + 1;
        else
        {
            // Get into reduced row echelon form
            bool Found;
            for (i--; i >= 0; i--)
            {
                Found = false;
                for (j = i; (j < A.Columns()) && (!Found); j++)
                    if (A(i,j) != 0)
                    {
                        for (k = i-1; k >= 0; k--)
                            A.SubRows(k, A(k,j)/A(i,j), i, j, A.Columns());
                        b(i,0) /= A(i,j);
                        A.DivideRow(i, A(i,j));
                        Found = true;
                    }
            }
            // Form the basis of solutions
            Matrix<T> solutions(A.Columns(), zeroRows + 1);
            solutions.LoadZeroes();
            s32 lastColumn = 1;
            i = 0; j = 0;
            Found = false;
            do
            {
                if (Found || (A(i,j) == 0))
                {
                    for (k = 0; (k < A.Rows()) && (k < solutions.Rows()); k++)
                        solutions(k,lastColumn) = -A(k,j);
                    solutions(j,lastColumn) = 1;
                    lastColumn++;
                    j++;
                }
                else
                {
                    solutions(j,0) = b(i,0);
                    if (i < A.Rows())
                        i++;
                    else
                        Found = true;
                    j++;
                }
            } while (j < A.Columns());
            *basis = solutions;
            return zeroRows + 1;
        }
    }
}

template<class T>
Matrix<T> Matrix<T>::SubmatrixWithout(u32 row, u32 col) const
{
    Matrix<T> subMatrix(rows-1, columns-1);
    u32 x, y = 0;
    for (u32 i = 0; i < rows; i++)
    {
        x = 0;
        if (i != row)
        {
            for (u32 j = 0; j < columns; j++)
            {
                if (j != col)
                {
                    subMatrix(x,y) = entry[i][j];
                    x++;                
                }
            }
            y++;
        }
    }
    return subMatrix;
}

template <class T> 
void Matrix<T>::SubRows(u32 i, T pivot, u32 j, u32 start,
                        u32 end)
{
    for (u32 k = start; k < end; k++)
        entry[i][k] -= (pivot*entry[j][k]);
}

template <class T> 
void Matrix<T>::SwapRows(u32 i, u32 j)
{
    Swap(entry[i], entry[j]);
}

template <class T> 
void Matrix<T>::Transpose()
{
    T **newEntry = new T*[columns];
    for (u32 i = 0; i < columns; i++)
        newEntry[i] = new T[rows];
    for (u32 i = 0; i < columns; i++)
        for (u32 j = 0; j < rows; j++)
            newEntry[i][j] = entry[j][i];
    for (u32 i = 0; i < rows; i++)
        delete[] entry[i];
    delete[] entry;
    entry = newEntry;
    Swap(rows, columns);
}

template<class T>
Matrix<T> Matrix<T>::Transposed() const
{
    Matrix<T> result(columns, rows);
    for (u32 i = 0; i < rows; i++)
        for (u32 j = 0; j < columns; j++)
            result.entry[j][i] = entry[i][j];
    return result;
}

template <class T> 
Matrix<T>::~Matrix()
{
    for (unsigned long i = 0; i < rows; i++)
        delete[] entry[i];
    delete[] entry;
}

int main()
{
    using namespace std;
    Matrix<float> x(3,1);
	x(0,0) = 2;
	x(1,0) = 1;
	x(2,0) = 2;
	Matrix<float>::Householder(x).Display();
    return 0;
}
(end of Matrix.cpp)-------------------------------------------
Comment 1 Martin Schlemmer (RETIRED) gentoo-dev 2004-02-18 10:14:09 UTC
Same thing still with 3.3.3.  Can you please attach the source + header and
preprocessed source here, as it is easier to work with?
Comment 2 Damjan Jovanovic 2004-02-27 02:05:33 UTC
Created attachment 26453 [details]
The header file used by Matrix.cpp
Comment 3 Damjan Jovanovic 2004-02-27 02:07:04 UTC
Created attachment 26454 [details]
The file which causes the internal compiler error when compiled

Try compiling with:
gcc Matrix.cpp -o Matrix
Comment 4 Caleb Tennis (RETIRED) gentoo-dev 2005-07-15 07:39:53 UTC
This still fails for me with 3.3.5 and doesn't compile at all with 4.0.1.  I 
think you should report it to gcc.gnu.org