 CARMA COLLOQUIUM
 Speaker: Karl Dilcher, Mathematics and Statistics, Dalhousie University
 Title: Zeros and irreducibility of gcdpolynomials
 Location: Room V205, Mathematics Building (Callaghan Campus) The University of Newcastle
 Time and Date: 4:00 pm, Thu, 15^{th} Oct 2015
 Abstract:
We study the family of selfinversive polynomials of degree $n$ whose $j$th
coefficient is $\gcd(n,j)^k$, for a fixed integer $k \geq 1$. We prove
that these polynomials have all of their roots on the unit circle, with
uniform angular distribution. In the process we prove some new results
on Jordan's totient function. We also show that these polynomials
are irreducible, apart from an obvious linear factor, whenever $n$ is a
power of a prime, and conjecture that this holds for all $n$.
Finally we use some of these methods to obtain general results on the zero
distribution of selfinversive polynomials and of their "duals" obtained
from the discrete Fourier transforms of the coefficients sequence.
(Joint work with Sinai Robins).
 [Permanent link]
