
Hacking the Linux 2.6 kernel, Part 2: Making your
first hack
Kernel source, system calls, and kernel modules and patches

Skill Level: Introductory

Lina Mårtensson (linam@tyst.nu)
Freelance writer

Valerie Henson (val@nmt.edu)
Software Engineer
IBM

02 Aug 2005

In this second of a two-part series, discover the organization of the Linux kernel
source, build an understanding of system calls, and craft your own kernel modules
and patches.

Section 1. Before you start

Learn what these tutorials can teach you, and what you need to run the examples in
them.

About this series

The capability of being modified is perhaps one of Linux's greatest strengths, and
anyone who has dabbled with the source code has at least stood at the gates of the
kingdom, if not opened them up and walked inside.

These two tutorials are intended to get you started. They are for anyone who knows
a little bit of programming and who wants to contribute to the development of Linux,
who feels that something is missing in the kernel and wants to fix that, or who just
wants to find out how a real operating system works.

Making your first hack
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 1 of 25

mailto:linam@tyst.nu
mailto:val@nmt.edu
http://www.ibm.com/legal/copytrade.shtml

About this tutorial

This tutorial is a sequel to "Hacking the Linux 2.6 kernel, Part 1: Getting ready."
Please read Part 1 before diving into Part 2.

We start where Part 1 left off by providing an overview of the kernel source. In this
tutorial, we review where the various parts of the kernel are located in the source
tree, what order they execute in, and how to go looking for a particular piece of code.
We then explain system calls, teach you how to make your own modules, and finally
instruct you on how to create, apply, and submit patches.

Prerequisites

To run the examples in this tutorial, you need a Linux box, root access on this Linux
box (or a sympathetic admin), the ability to reboot this box several times a day, an
installed compilation environment, and a way to get the kernel source.

The system prerequisites are covered in detail in Part 1 under "Requirement details."
If you're not up on these details, you'll probably want to brush up before going on to
the next section of this tutorial.

Section 2. Overview of the kernel source

The source tree

Let's start with the top-level directory of the Linux source tree, which is usually but
not always in /usr/src/linux-<version>. We won't get too detailed, because
the Linux source changes constantly, but we'll try to give you enough information to
figure out where a certain driver or function is.

Makefile: This file is the top-level makefile for the whole source tree. It defines a
lot of useful variables and rules, such as the default gcc compilation flags.

Documentation/: This directory contains a lot of useful (but often out of date)
information about configuring the kernel, running with a ramdisk, and similar things.
The help entries corresponding to different configuration options are not found here,
though -- they're found in Kconfig files in each source directory.

arch/: All the architecture-specific code is in this directory and in the
include/asm-<arch> directories. Each architecture has its own directory
underneath this directory. For example, the code for a PowerPC-based computer
would be found under arch/ppc. You will find low-level memory management,

developerWorks® ibm.com/developerWorks

Making your first hack
Page 2 of 25 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/developerworks/linux/edu/l-dw-linux-kernelhack1-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-kernelhack1-i.html
http://www.ibm.com/legal/copytrade.shtml

interrupt handling, early initialization, assembly routines, and much more in these
directories.

crypto/: This is a cryptographic API for use by the kernel itself.

drivers/: As a general rule, code to run peripheral devices is found in
subdirectories of this directory. This includes video drivers, network card drivers,
low-level SCSI drivers, and other similar things. For example, most network card
drivers are found in drivers/net. Some higher level code to glue all the drivers of
one type together may or may not be included in the same directory as the low-level
drivers themselves.

fs/: Both the generic filesystem code (known as the VFS, or Virtual File System)
and the code for each different filesystem are found in this directory. One of the most
commonly used filesystems in Linux is the ext2 filesystem; the code to read the ext2
format is found in fs/ext2. Not all of the filesystems compile or run; the more
obscure filesystems are always a good candidate for someone looking for a kernel
project.

include/: Most of the header files included at the beginning of a .c file are found
in this directory. Architecture-specific include files are in asm-<arch>. Part of the
kernel build process creates the symbolic link from asm to asm-<arch>, so that
#include <asm/file.h> will get the proper file for that architecture without
having to hardcode it into the .c file. The other directories contain
non-architecture-specific header files. If a structure, constant, or variable is used in
more than one .c file, it should be probably be in one of these header files.

init/: This directory contains the files main.c, code for creating early userspace,
and other initialization code. main.c can be thought of as the kernel "glue." We'll
talk more about main.c in the next section. Early userspace provides functionality
that needs to be available while a Linux kernel is coming up, but that doesn't need to
be run inside the kernel itself.

ipc/: IPC stands for interprocess communication. It contains the code for shared
memory, semaphores, and other forms of IPC.

kernel/: Generic kernel-level code that doesn't fit anywhere else goes in here. The
upper-level system-call code is here, along with the printk() code, the scheduler,
signal-handling code, and much more. The files have informative names, so you can
type ls kernel/ and guess fairly accurately at what each file does.

lib/: Routines of generic usefulness to all kernel code are put in here. Common
string operations, debugging routines, and command-line parsing code are all in
here.

mm/: High-level memory-management code is in this directory. Virtual memory (VM)
is implemented through these routines in conjunction with the low-level
architecture-specific routines usually found in arch/<arch>/mm/. Early-boot
memory management (needed before the memory subsystem is fully set up) is done
here, as well as memory mapping of files, management of page caches, memory

ibm.com/developerWorks developerWorks®

Making your first hack
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 3 of 25

http://www.ibm.com/legal/copytrade.shtml

allocation, and swap out of pages in RAM (along with many other things).

net/: The high-level networking code is here. The low-level network drivers pass
received packets up to and get packets to send from this level, which may pass the
data to a user-level application, discard the data, or use it in-kernel, depending on
the packet. The net/core directory contains code useful to most of the different
network protocols, as do some of the files in the net/ directory itself. Specific
network protocols are implemented in subdirectories of net/. For example, IP
(version 4) code is found in the directory net/ipv4.

scripts/: This directory contains scripts that are useful in building the kernel, but
does not include any code that is incorporated into the kernel itself. The various
configuration tools keep their files in here, for example.

security/: Code for different Linux security models can be found here, such as
NSA Security-Enhanced Linux and socket and network security hooks, as well as
other security options.

sound/: Drivers for sound cards and other sound related code is placed here.

usr/: This directory contains code that builds a cpio-format archive containing a
root filesystem image which will be used for early userspace.

Where does it all come together?

The central connecting point of the whole Linux kernel is the file init/main.c.
Each architecture executes some low-level set-up functions and then executes the
function called start_kernel (which is found in init/main.c).

The order of execution of code looks something like this:

Architecture-specific set-up code (in arch/<arch>/*)
|
v
The function start_kernel() (in init/main.c)
|
v
The function init() (in init/main.c)
|
v
The user level "init" program

More details on the order of execution

In more detail, this is what happens:

• Architecture-specific set-up code that:

developerWorks® ibm.com/developerWorks

Making your first hack
Page 4 of 25 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

• Unzips and moves the kernel code itself, if necessary

• Initializes the hardware

• This may include setting up low-level memory management

• Transfers control to the function start_kernel()

• start_kernel() does, among other things:

• Print out the kernel version and command line

• Start output to the console

• Enable interrupts

• Calibrate the delay loop

• Calls rest_init() which:

• Starts a kernel thread to run the init() function

• Enters the idle loop

• init():

• Starts the other processors (on SMP machines)

• Starts the device subsystems

• Mounts the root filesystem

• Frees up unused kernel memory

• Runs /sbin/init (or /etc/init, or...)

At this point, the userlevel init program is running; it will do things like start
networking services and run getty (the login program) on your console(s).

You can figure out when a subsystem is initialized from start_kernel() or
init() by putting in your own printks and seeing when the printks from that
subsystem appear with regard to your own printks. For example, if you wanted to
find out when the ALSA sound system was initialized, put printks at the beginning
of start_kernel() and init() and look for where "Advanced Linux Sound
Architecture [...]" is printed out relative to your printks. (Part 2 offers help and tips
for using the printk() function.)

Finding things in the kernel source tree

So, you want to start working on say, the USB driver. Where do you start looking for
the USB code?

First, you can try a find command from the top-level kernel directory:

ibm.com/developerWorks developerWorks®

Making your first hack
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 5 of 25

http://www.ibm.com/legal/copytrade.shtml

$ find . -name *usb*

This command will print out every filename that has the string "usb" somewhere in it.

Another thing you might try is looking for a unique string. This unique string can be
the output of a printk(), the name of a file in /proc, or any other unique string
that might be found in the source code for that driver. For example, USB prints out
the message:

USB Universal Host Controller Interface driver v2.2

so you might try using a recursive grep to find the part of that printk that is not the
version number:

$ grep -r "USB Universal Host Controller Interface driver" .

Another way you might try to find the USB source code is by looking in /proc. If you
type find /proc -name usb, you might find that there is a directory named
/proc/bus/usb. You might be able to find a unique string to grep for by reading
the entries in that directory.

If all else fails, try descending into individual directories and listing the files or looking
at the output of ls -lR. You may see a filename that looks related. But this should
really be a last resort, something to be tried only after you have run many different
find and grep commands.

Once you've found the source code you are interested in, you can start reading it.
Reading and understanding Linux kernel code is another lesson in itself. Just
remember that the more you read kernel code, the easier it gets. Have fun exploring
the kernel!

Section 3. Understanding system calls

System calls

By now, you're probably looking around at device driver code and wondering, "How
does the function foo_read() get called?" Or perhaps you're wondering, "When I
type cat /proc/cpuinfo, how does the cpuinfo() function get called?"

Once the kernel has finished booting, the control flow changes from a comparatively

developerWorks® ibm.com/developerWorks

Making your first hack
Page 6 of 25 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

straightforward "Which function is called next?" to being dependent on system calls,
exceptions, and interrupts. In this tutorial, we'll talk about system calls.

What's a system call?

In the most literal sense, a system call (also called a "syscall") is an instruction
similar to the "add" instruction or the "jump" instruction. At a higher level, a system
call is the way a user-level program asks the operating system to do something for it.
If you're writing a program and you need to read from a file, you use a system call to
ask the operating system to read the file for you.

System calls in detail

Here's how a system call works. First, the user program sets up the arguments for
the system call. One of the arguments is the system call number (more on that later).
Note that all this is done automatically by library functions unless you are writing in
assembly. After the arguments are all set up, the program executes the "system call"
instruction. This instruction causes an exception: An event that causes the processor
to jump to a new address and start executing the code there.

The instructions at the new address save your user program's state, figure out what
system call you want, call the function in the kernel that implements that system call,
restores your user program state, and returns control back to the user program. A
system call is one way that the functions defined in a device driver end up being
called.

That was the whirlwind tour of how a system call works. Next, we'll go into minute
detail for those who are curious about exactly how the kernel does all this. Don't
worry if you don't quite understand all of the details -- just remember that this is one
way that a function in the kernel can end up being called -- no magic is involved. You
can trace the control flow all the way through the kernel -- with difficulty sometimes,
but you can do it.

A system call example: 1

This is a good place to start showing some code to go along with the theory. We'll
follow the progress of a read() system call, starting from the moment the system
call instruction is executed. The PowerPC architecture will be used as an example
for the architecture specific part of the code. On the PowerPC, when you execute a
system call, the processor jumps to the address 0xc00. The code at that location is
defined in the file arch/ppc/kernel/head.S. It looks something like this:

/* System call */
. = 0xc00

SystemCall:
EXCEPTION_PROLOG

ibm.com/developerWorks developerWorks®

Making your first hack
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 7 of 25

http://www.ibm.com/legal/copytrade.shtml

EXC_XFER_EE_LITE(0xc00, DoSyscall)

/* Single step - not used on 601 */
EXCEPTION(0xd00, SingleStep, SingleStepException, EXC_XFER_STD)
EXCEPTION(0xe00, Trap_0e, UnknownException, EXC_XFER_EE)

What this code does is save some state and call another function called
DoSyscall. Here's a more detailed explanation (feel free to skip this part).

EXCEPTION_PROLOG is a macro that handles the switch from user to kernel space
which requires things like saving the register state of the user process.
EXC_XFER_EE_LITE is called with the address of this routine and the address of
the function DoSyscall. Eventually, some state will be saved and DoSyscall will
be called. The next two lines save two exception vectors on the addresses 0xd00
and 0xe00.

EXC_XFER_EE_LITE looks like this:

#define EXC_XFER_EE_LITE(n, hdlr) \
EXC_XFER_TEMPLATE(n, hdlr, n+1, COPY_EE, transfer_to_handler, \

ret_from_except)

EXC_XFER_TEMPLATE is another macro and the code looks like this:

#define EXC_XFER_TEMPLATE(n, hdlr, trap, copyee, tfer, ret) \
li r10,trap; \
stw r10,TRAP(r11); \
li r10,MSR_KERNEL; \
copyee(r10, r9); \
bl tfer; \

i##n: \
.long hdlr; \
.long ret

li stands for load immediate which means that a constant value known at compile
time is stored in a register. First, trap is loaded into the register r10. On the next
line, that value is stored on the address given by TRAP(r11). TRAP(r11) and the
next two lines do some hardware-specific bit manipulation. After that we call the
tfer function (the transfer_to_handler function) which does yet more
housekeeping and then transfers control to hdlr (DoSyscall). Note that
transfer_to_handler loads the address of the handler from the link register
which is why you see .long DoSyscall instead of bl DoSyscall.

A system call example: 2

Now, let's look at DoSyscall. It's in the file arch/ppc/kernel/entry.S.
Eventually, this function loads up the address of the syscall table and indexes into it
using the system call number. The syscall table is what the OS uses to translate

developerWorks® ibm.com/developerWorks

Making your first hack
Page 8 of 25 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

from a system call number to a particular system call.

The system call table is named sys_call_table and defined in
arch/ppc/kernel/misc.S. The syscall table contains the addresses of the
functions that implement each system call. For example, the read() system call
function is named sys_read. The read() system call number is 3, so the address
of sys_read() is in the fourth entry of the system call table (since we start
numbering the system calls with 0). We read the data from the address
sys_call_table + (3 * word_size) and we get the address of
sys_read().

After DoSyscall has looked up the correct system call address, it transfers control
to that system call. Let's look at where sys_read() is defined, in the file
fs/read_write.c. This function finds the file struct associated with the fd number
you passed to the read() function. That structure contains a pointer to the function
that should be used to read data from that particular kind of file. After doing some
checks, it calls that file-specific read() function in order to actually read the data
from the file and then returns. This file-specific function is defined somewhere else --
the socket code, filesystem code, or device driver code, for example. This is one of
the points at which a specific kernel subsystem finally interfaces with the rest of the
kernel.

After our read function finishes, we return from the sys_read() back to
DoSyscall() which switches control to ret_from_except (defined in
arch/ppc/kernel/entry.S). This checks for tasks that might need to be done
before switching back to user mode. If nothing else needs to be done, we fall
through to the restore function which restores the user-process's state and returns
control back to the user program.

There! Your read() call is done! If you're lucky, you even got your data back.

You can explore syscalls further by putting printks at strategic places. Be sure to
limit the amount of output from these printks. For example, if you add a printk to
sys_read() syscall, you should do something like this:

static int mycount = 0;

if (mycount < 10) {
printk ("sys_read called\n");
mycount++;

}

Have fun!

Section 4. Your first kernel module

ibm.com/developerWorks developerWorks®

Making your first hack
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 9 of 25

http://www.ibm.com/legal/copytrade.shtml

Introduction

In this section, we'll write and load a simple kernel module. Writing your own module
lets you write some standalone kernel code, learn how to use modules, and discover
a few rules about how the kernel links together. Note: These instructions were
written for the 2.6.x kernels and may not work with different kernel versions.

Does your kernel support modules?

For this section, your kernel must have been compiled with these options:

Loadable module support --->

[*] Enable loadable module support
[*] Module unloading
[] Module versioning support (EXPERIMENTAL)
[*] Automatic kernel module loading

If you compiled your kernel according to the instructions in the first tutorial, you
should already have these options properly set. Otherwise, change these options,
recompile the kernel, and boot into your new kernel.

A simple module skeleton

First, find the source that your current Linux kernel was compiled from. Change
directory to drivers/misc/ in your Linux source code directory. Now, copy and
paste the following code into a file named mymodule.c:

#include <linux/module.h>
#include <linux/config.h>
#include <linux/init.h>

static int __init mymodule_init(void)
{

printk ("My module worked!\n");
return 0;

}

static void __exit mymodule_exit(void)
{

printk ("Unloading my module.\n");
return;

}

module_init(mymodule_init);
module_exit(mymodule_exit);

MODULE_LICENSE("GPL");

developerWorks® ibm.com/developerWorks

Making your first hack
Page 10 of 25 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Save the file and edit the Makefile in the same directory. Add this line:

obj-m += mymodule.o

Compile your module:

make -C <top directory of your kernel source> SUBDIRS=$PWD modules

Load the module with insmod ./mymodule.ko and check to see if your message
printed out: dmesg | tail. You should see this at the end of the output:

My module worked!

Now remove the kernel module: rmmod mymodule. Check the output of dmesg
again; you should see:

Unloading my module.

You just wrote and ran a new kernel module! Congratulations!

The module/kernel interface

Now, let's do some more interesting things with your module. One of the key things
to realize is that modules can only "see" functions and variables that the kernel
deliberately makes visible to the modules. First, let's try to do things the wrong way.

Edit the file kernel/printk.c and add this line after all the included files and near
the other global variable declarations (but outside all functions):

int my_variable = 0;

Now recompile your kernel and reboot into your new kernel. Next, add this to the
beginning of your module's mymodule_init function before the other code:

extern int my_variable;
printk ("my_variable is %d\n", my_variable);
my_variable++;

Save your changes and recompile your module:

ibm.com/developerWorks developerWorks®

Making your first hack
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 11 of 25

http://www.ibm.com/legal/copytrade.shtml

make -C <top directory of your kernel source> SUBDIRS=$PWD modules

And load the module (this will fail): insmod ./mymodule.ko. Loading your module
should fail with the message:

insmod: error inserting './mymodule.ko': -1 Unknown symbol in module

What this is saying is that the kernel is not allowing modules to see that variable.
When the module loads, it has to resolve all its external references like function
names or variable names. If it can't find all of its unresolved names in the list of
symbols that the kernel exports, then the module can't write to that variable or call
that function. The variable my_variable has space allocated for it somewhere in
the kernel, but the module can't figure out where.

To fix this, we're going to add my_variable to the list of symbols that the kernel
exports. Many kernel directories have a file specifically for exporting symbols defined
in that directory. Bring up the file kernel/printk.c again and add this line after
the declaration of your variable:

EXPORT_SYMBOL(my_variable);

Recompile and reboot into your new kernel. Now try to load your module again:
insmod ./mymodule.ko. This time, when you check dmesg, you should see:

my_variable is 0
My module worked!

Reload your module:

rmmod mymodule && insmod ./mymodule.ko

Now you should see:

Unloading my module.
my_variable is 1
My module worked!

Each time you reload the module, my_variable should increase by one. You are
reading and writing to a variable which is defined in the main kernel. Your module
can access any variable or function in the main kernel, as long as it is explicitly

developerWorks® ibm.com/developerWorks

Making your first hack
Page 12 of 25 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

exported via the EXPORT_SYMBOL() declaration. For example, the function
printk() is defined in the kernel and exported in the file kernel/printk.c.

A simple loadable kernel module is a fun way to explore the kernel. For example,
you can use a module to turn a printk on or off by defining a variable do_print in
the kernel which is initially set to 0. Then make all your printks dependent on
"do_print":

if (do_print) {
printk ("Big long obnoxious message\n");

}

And turn on do_print only when your module is loaded.

Module parameters

It is possible to pass arguments to your module when loading it. To load a module
with module parameters, write:

insmod module.ko [param1=value param2=value ...]

To use the values from these parameters, declare variables to save them in in your
module and use the macros MODULE_PARM(variable, type) and
MODULE_PARM_DESC(variable, description) somewhere outside all
functions to populate them. The type argument should be a string in the format
[min[-max]]{b,h,i,l,s} where min and max delimit the length of an array. If
both are omitted, the default is 1. The final character is a type specifier:

b byte
h short
i int
l long
s string

You can add any description you like in the description field of
MODULE_PARM_DESC.

Writing a module that uses interrupts

Now we're going to write a module that has a function that is called when the kernel
receives an interrupt on a certain IRQ. First, copy the file mymodule.c to
myirqtest.c and remove the contents of the functions with the exception of the
return statements. Open myirqtest.c in your editor and replace the occurrences
of "mymodule" with "myirqtest" to change the function names. Also remove the

ibm.com/developerWorks developerWorks®

Making your first hack
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 13 of 25

http://www.ibm.com/legal/copytrade.shtml

printks. To be able to use interrupts, add the line:

#include <linux/interrupt.h>

at the top of the file.

Use cat /proc/interrupts to find out what interrupts are in use. The first
column tells you which interrupt number is used, the second how many times there
have been interrupts on that IRQ since your computer was last booted, and the third
which devices that use this IRQ. In this example, we will look at interrupts from a
network interface and use two module parameters interface and irq to tell which
interface and IRQ line that we want to use.

To take care of the module parameters, declare two variables to put them in and use
MODULE_PARM and MODULE_PARM_DESC to catch the parameters. This code should
be put somewhere outside all functions:

static int irq;
static char *interface;

MODULE_PARM(interface, "s");
MODULE_PARM_DESC(interface, "A network interface");
MODULE_PARM(irq, "i");
MODULE_PARM_DESC(irq, "The IRQ of the network interface");

The function request_irq() adds your function to the list of handlers for a
selected IRQ line which you can use to print out a message each time you receive
an interrupt on that line. Now, we need to request the IRQ for the network device in
the function myirqtest_init. request_irq is defined as follows:

int request_irq(unsigned int irq,
void (*handler)(int, void *, struct pt_regs *),
unsigned long irqflags,
const char *devname,
void *dev_id);

irq is the interrupt number. We will use the value we received from the module
parameter. handler is a pointer to the function that will handle the interrupt. We will
name our handler function myinterrupt(). As the value for irqflags, we will
use SA_SHIRQ which indicates that our handler supports sharing IRQ with other
handlers. The devname is a short name for the device and is displayed in the
/proc/interrupts list. We will use the value in the interface variable which
we receive as a module parameter.

The dev_id parameter is the device ID. This parameter is often set to NULL, but it
needs to be non-NULL if you want to share the IRQ so that the correct driver will be
unhooked when the IRQ is freed using free_irq() later on. Since it's a void *, it

developerWorks® ibm.com/developerWorks

Making your first hack
Page 14 of 25 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

can point to anything, but a common practice is to pass the driver's device structure.
Here, we will use a pointer to our irq variable.

Upon success, request_irq() will return 0.

After writing the code, myirqtest_init() should look something like this:

static int __init myirqtest_init(void)
{

if (request_irq(irq, &myinterrupt, SA_SHIRQ, interface, &irq)) {
printk(KERN_ERR "myirqtest: cannot register IRQ %d\n", irq);
return -EIO;

}
printk("Request on IRQ %d succeeded\n", irq);

return 0;
}

If request_irq() doesn't return 0, something has gone wrong and the IRQ
couldn't be registered, so we print out an error message and return with an error
code.

Now, we also need to free the IRQ when we unload the module. This is done with
free_irq which takes an interrupt number and a device ID as arguments. The
interrupt number was saved in the irq variable and we used a pointer to this as the
device ID, so all we need to do is to add this code in the beginning of
myirqtest_exit():

free_irq(irq, &irq);
printk("Freeing IRQ %d\n", irq);

All we have left to do now is to write the myinterrupt() handler function. The
declaration of it has already been indirectly specified in on of the arguments to
request_irq(): void (*handler)(int, void *, struct pt_regs *).
The first argument is the interrupt number, the second argument is the device ID that
we used in request_irq, and the third argument holds a pointer to a structure
containing the processor registers and state prior to servicing the interrupt.

Without looking at the processor registers, we won't know if an interrupt comes from
our device or from some other device that shares the same IRQ. In this case, we will
be satisfied with knowing that the interrupt was on the specified IRQ. When writing
real drivers, it's important to check this and if the handler discovers that the interrupt
was meant for another device, it should immediately return the value IRQ_NONE
without handling the interrupt. If the interrupt was from our device and the handler
was called correctly, IRQ_HANDLED should be returned. These operations are
hardware specific and will not be covered here.

So, the myinterrupt() function will be called every time there's an interrupt on
the specified IRQ. We will do a printout when this happens, but we want to limit the

ibm.com/developerWorks developerWorks®

Making your first hack
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 15 of 25

http://www.ibm.com/legal/copytrade.shtml

amount of output, so we'll do what we previously suggested and just do the printout
on the first 10 interrupts.

We also need to return something from this function. Since this is not a real driver
and we're just snooping the interrupts, we should return IRQ_NONE. By returning
IRQ_HANDLED we would be saying that this is the real driver for the device and that
no other driver needs to care about the interrupt (which is not true in this case).

Here's the resulting code for myinterrupt():

static irqreturn_t myinterrupt(int irq, void *dev_id, struct pt_regs *regs)
{

static int mycount = 0;

if (mycount < 10) {
printk("Interrupt!\n");
mycount++;

}

return IRQ_NONE;
}

And now we're done! Add the line:

obj-m += myirqtest.o

to the Makefile in this directory and compile your module with:

make -C <top directory of your kernel source> SUBDIRS=$PWD modules

Now, insert your module (set the values of your parameters to something that will
work on your system, see cat /proc/interrupts):

insmod myirqtest.ko interface=eth0 irq=9

Look at the printout from dmesg. It should look something like this:

Request on IRQ 9 succeeded
Interrupt!
Interrupt!
Interrupt!
Interrupt!
Interrupt!

There should be at most 10 lines of "Interrupt!" since we limited the number of

developerWorks® ibm.com/developerWorks

Making your first hack
Page 16 of 25 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

printouts to that much. Now, unload the module:

rmmod myirqtest

The IRQ should now be freed from our handler. Check the output from dmesg. It
should look like this:

Freeing IRQ 9

You have now made your own kernel module that uses interrupts! Play with your
new kernel module -- modules are fun!

Section 5. Creating, applying, and submitting patches

Having a patch accepted

As a kernel developer, you'll spend a lot of time creating, applying, and submitting
patches. Creating and applying patches can be tricky -- a lot of conventions must be
learned and a lot of common mistakes avoided. Submitting a patch also takes some
work.

At first, submitting patches might seem like the easiest part of kernel development.
After all, it can't be as hard as fixing an Ethernet driver bug, right? Often it's easier to
fix a kernel bug than to get a kernel patch accepted into the mainline kernel. Part of
the reason is the sheer limitations of one person -- the kernel maintainer can only
read and accept so many patches per release. But other reasons why patches are
hard to get accepted are controversial changes, territoriality, personality conflicts,
and apathy. And finally, whenever you submit a patch, you are putting your
reputation and ego on the line and that's more than a little scary.

That being said, submitting a patch can be a lot of fun and very encouraging. Some
kernel developers had parties to celebrate the first patch they wrote that was
accepted into the mainline kernel. Knowing that you wrote some code that other
people thought was good enough to include in the Linux kernel is a great feeling, so
let's learn how to apply, create, and submit patches.

How patches work

A "patch" is a file that describes the differences between two versions of a file. The
program diff compares the original file and the new file line-by-line and prints the

ibm.com/developerWorks developerWorks®

Making your first hack
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 17 of 25

http://www.ibm.com/legal/copytrade.shtml

differences to standard out in a specific format. The program patch can read the
output of diff and apply those changes to another copy of the original file. (Note
that the word "patch" refers both to the output of the diff command and to the
command that applies the patch.) For example:

$ cat old/file.txt
This
is
a
simple
file.
$ cat new/file.txt
This
is
a
slightly more complex
file.
$ diff -uNr old new
diff -uNr old/file.txt new/file.txt
--- old/file.txt Tue May 28 23:00:21 2002
+++ new/file.txt Tue May 28 23:01:01 2002
@@ -1,5 +1,5 @@
This
is
a
-simple
+slightly more complex
file.

As you can see, the two files differ in only one line. The line from the first file listed
on the command line is shown with a "-" in front of it, followed by the line from the
second file on the command line is shown with a "+" in front of it. Intuitively, you are
"subtracting" the line from the old file and "adding" the line from the new file.
Remember, the old files always come first and the newer files second.

Now, let's apply the patch we just created. A patch updates the older version of the
file to the newer version of the file, so we want to apply the patch to the older version
of the file.

$ diff -uNr old new > patchfile
$ cd old
$ patch -p1 < ../patchfile
patching file file.txt
$ cat file.txt
This
is
a
slightly more complex
file.

After applying the output of the diff command using patch, the "old" file is now
the same as the "new" file.

developerWorks® ibm.com/developerWorks

Making your first hack
Page 18 of 25 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Applying patches

Next, we'll learn how to apply patches. One of the common reasons you'll need to
apply a patch is in order to get a particular kernel version which isn't available as one
big tarball downloadable from ftp.kernel.org -- or else to get an incremental
patch so you don't have to download an entire new kernel when most of the kernel
files are still the same.

The kernel patch naming and creation standards are not particularly simple. Say that
you want to get the kernel 2.6.9-rc4, for some reason, and you currently have the
full kernel source for version 2.6.7. You'll need to download the following patches
to get from 2.6.7 to 2.6.9-rc4:

2.6.7 to 2.6.8

2.6.8 to 2.6.9-rc4

Each prepatch (the patches that come between the major releases and are named
patch-2.6.x-rcN, usually found in a directory on the ftp site called testing) is
created by diffing against the previous major release. A common mistake is to
download kernel version 2.6.9 and then attempt to apply the 2.6.9-rc4 prepatch.
If you want kernel version 2.6.9-rc4, you should download kernel 2.6.8 and then
apply the 2.6.9-rc4 prepatch. This is because 2.6.9-rc4 is a predecessor of
2.6.9, not the other way around. Note: The naming convention and location of
kernel prepatches tends to change frequently. You may have to read the linux-kernel
mailing list to find out where the very latest patches are being kept and what they are
being named.

The official kernel patches are all made so that you can simply do the following:

cd <your linux source tree>
patch -p1 < ../patchfile

What the -p1 option to the patch command says is to "strip the part of the pathname
up through the first forward slash and then try to apply the patch to the file with the
stripped down pathname."

If all this seems incredibly complex and annoying, you might want to try using
Cogito. The end of this section carries a brief introduction to Cogito.

Creating a patch

The first thing to remember is to always keep an untouched, pristine version of the
kernel source somewhere. Don't compile in it, don't edit any files in it, don't do
anything to it -- just copy it to make your working copy of the source tree. The
original kernel source should be in a directory named linux.vanilla or

ibm.com/developerWorks developerWorks®

Making your first hack
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 19 of 25

http://www.ibm.com/legal/copytrade.shtml

linux.orig and your working directory should be in the same directory as the
original source. For example, if your pristine source is in
/usr/src/linux.vanilla, your working source should be in /usr/src/ also.

After you make your changes to your working copy, you'll create a patch using diff.
Assuming that your working tree is named linux.new, you would run this
command:

$ diff -upNr linux.vanilla linux.new > patchfile

All the differences between the original kernel source and your new kernel source
are now in patchfile. Note: Do not ever create a patch with uneven directories,
for example (DON'T do this):

$ diff -upNr linux.vanilla working/usb/thing1/linux > patchfile

This will not create a patch in the standard patch format and no one will bother trying
out your patch since it's hard to apply.

Now that you've created a patch, read it! It's almost guaranteed that your patch
includes files that you don't want as part of your patch, such as old editor back-up
files, object files, or random junk data you created during development. To get rid of
these files, you can tell diff to ignore certain files, you can delete the files, or you can
hand-edit the diff. Be sure you understand the patch format before you hand-edit a
patch or you can easily create a patch that won't apply. One useful command for
getting rid of most of the extra files created during a kernel build is make
mrproper.

But remember, this deletes your .config file and forces you to do a complete
recompile of your kernel.

Also, make sure that your patch goes in the correct direction. Are your new lines the
ones with "+" in front of them? And, make sure those are the changes you wanted to
send. It's surprisingly easy to make a diff against the wrong source tree entirely.

After you think you've got a final version of the patch, apply it to a copy of your
pristine source tree (don't ruin your only copy of the pristine source tree). If it doesn't
apply without errors, redo the patch.

Once again, if this seems awfully complex, you may want to try Cogito.

What to think about before submitting your patch

After you've created a patch, you'll hopefully want to share it with other people.
Ideally, you'll test the patch yourself, get other people to test it too, and have other

developerWorks® ibm.com/developerWorks

Making your first hack
Page 20 of 25 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

people read the patch itself. In summary, you want your patch to be bug-free,
well-written, and easy to apply.

Always compile and test your patches yourself. You'll see people posting "totally
untested" patches to linux-kernel, but don't fall for it -- a totally untested patch is
likely to be a useless patch. Kernel maintainers have more than once released a
kernel which doesn't compile at all. No one is perfect -- always test your patches.

Be sure that your code fits in with the code around it and follows the kernel coding
style conventions. See the file Documentation/CodingStyle for specific
directions, although looking at other source files is often the best way to figure out
what the current conventions are.

If it's difficult to apply your patch, it almost certainly won't be accepted. In addition to
creating the patch with the proper level of directories, you need to create it against
the kernel that is identical (or nearly so) to the kernel that other people will be
applying your patch to. So if you want person XYZ to apply your patch, find out what
version of the kernel person XYZ is using and try to get something as close to that
as possible. Usually this is the latest vanilla kernel released by the kernel maintainer.

For example, if you have a patch against 2.6.9-rc2 and 2.6.9-rc4 is the latest
version released, then you should recreate your patch against 2.6.9-rc4. The
easiest way to do this is to apply your patch from 2.6.9-rc2 to 2.6.9-rc4 and fix
up any changes that occurred between the two versions, then rediff against
2.6.9-rc4.

Who to submit your patch to

The answer to this question is "it depends." Subscribe to the Linux kernel mailing list
and any list which is more specific to the area you are working on; you will begin to
get an idea of who the appropriate person is.

Try to find the person most specifically involved in maintaining the part of the kernel
you are changing. If you make a change to the foo driver in the bar subsystem and
the foo driver has a maintainer, you should probably submit your patch to the foo
maintainer and only to the bar subsystem maintainer if the foo maintainer is ignoring
you.

The MAINTAINERS file in the top-level kernel source directory is frequently out of
date, but often helpful anyway. No one will fault you if you send your patch to the
person listed in the MAINTAINERS file. When in doubt, this is always the safest route
to take.

Also, unless you have a reason not to do so, send your patch to the Linux kernel
mailing list at linux-kernel@vger.kernel.org. Other developers than the maintainer
might need to be informed about your change. They might also be of help by giving
comments and suggestions.

ibm.com/developerWorks developerWorks®

Making your first hack
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 21 of 25

http://www.ibm.com/legal/copytrade.shtml

Distributing your patch

Most patches are small enough to be included in an email. While some maintainers
refuse to accept patches in attachments and some refuse MIME-encoded
attachments, all maintainers will accept a patch that is included in the body of a
text-only email. Make sure your mail client isn't mangling your patch -- if you aren't
sure, email your patch to yourself and apply it to make sure other people will be able
to apply it to. Most Linux mailing lists like patches with a meaningful
English-language subject, prefixed with the string [PATCH] so that it's easy to find
and read patches.

If your patch is too big to send by email (around 40 KB or larger), put it on a Web
page or ftp site where other people can download it and put the URL in your email.

More guidelines on how to submit your patches can be found in the file
Documentation/SubmittingPatches in the source tree.

Political considerations

If all that mattered is that your patch was well-formed, correct, and fixed a bug,
submitting a patch would be a lot simpler. Instead, your patch needs to be tasteful,
timely, interesting, and considerate of the maintainer's ego. Most of the time, a
simple bugfix will be immediately accepted. Occasionally though, you'll run into
bigger problems. The important thing to remember is that you can't work around the
Linux maintainer system; you have to work through it.

Read a few threads on linux-kernel in which people tried to wheedle their patch into
the kernel. If your patch isn't accepted, listen to what other people are saying about it
and try to fix the problems with it. The most often rejected patch is the feature patch
-- adding a new feature that is considered tasteless by the other maintainers. Don't
waste your time trying to get that patch accepted, just maintain it separately. If
enough people find the patch useful, you'll gain a reputation as being a useful kernel
hacker among all the people who download and use your patch.

Sometimes, a maintainer just can't accept a patch because of his or her ego. When
this happens, the only option is to maintain a better version of the code
independently of the main kernel. Often, externally maintained code that proves to
be better will replace the in-kernel code after a while -- which is one way to become
a maintainer.

The alternative to diff and patch: Cogito

Cogito is currently being used by many kernel developers as a replacement for diff
and patch. It simplifies a lot of kernel development tasks, such as updating to the
latest version, creating patches, and applying patches.

To add a file, run:

developerWorks® ibm.com/developerWorks

Making your first hack
Page 22 of 25 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

$ cg-add file

To create a patch, run:

$ cg-diff > patchfile

To apply a patch, run:

$ cg-patch < patchfile

Section 6. Summary

In this tutorial series, you learned about different ways to get the kernel source, how
to configure your own kernel, and how to boot it using a variety of bootloaders. You
also got an overview of the kernel source, learned more about system calls, and
learned how to write your own kernel modules and create patches.

You are now ready to explore the kernel source on you own, use the system calls,
and build your own modules. See the Resources for links to topics for further
exploration. For example, KernelTrap and Kernel Traffic offer news and discussions
on kernel development.

ibm.com/developerWorks developerWorks®

Making your first hack
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 23 of 25

resources.html
http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• Part 1 of this series, "Hacking the Linux 2.6 kernel, Part 1: Getting ready,"
(developerWorks, July 2005) introduces ways to get the kernel source, how to
configure your own kernel, and how to boot it using a variety of bootloaders.

• To learn more about how to use Cogito, take a look at the README file.

• The LILO mini-HOWTO and the GRUB manual are available online.

• "Inside the Linux kernel debugger" (developerWorks, June 2003) details KDB,
the built-in kernel debugger in Linux, which allows you to trace the kernel
execution and examine its memory and data structures.

• "Magic sys request" (developerWorks, April 2000) shows you how to recover
from kernel meltdown.

• Find more resources for Linux developers in the developerWorks Linux zone.

Get products and technologies

• Get Cogito and the Linux kernel source at The Linux Kernel Archives.

• Order the no-charge SEK for Linux, a two-DVD set containing the latest IBM
trial software for Linux from DB2, Lotus, Rational, Tivoli, and WebSphere.

• Build your next development project on Linux with IBM trial software, available
for download directly from developerWorks.

Discuss

• KernelNewbies.org has lots of resources for people who are new to hacking the
kernel: an FAQ, an IRC channel, a mailing list, and a wiki.

• KernelTrap is a Web community devoted to sharing the latest in kernel
development news.

• At Kernel Traffic you can find a newsletter that covers some of the discussion
on the Linux kernel mailing list.

• Get involved in the developerWorks community by participating in
developerWorks blogs.

About the authors

Lina Mårtensson
Lina Mårtensson is pursuing a M.Sc. in Computer Science and Engineering at
Chalmers University of Technology, Sweden. Contact Lina at linam@tyst.nu.

developerWorks® ibm.com/developerWorks

Making your first hack
Page 24 of 25 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/developerworks/linux/edu/l-dw-linux-kernelhack1-i.html
http://www.kernel.org/pub/software/scm/cogito/README
http://tldp.org/HOWTO/LILO.html
http://www.gnu.org/software/grub/manual/
http://www.ibm.com/developerworks/linux/library/l-kdbug/index.html
http://www.ibm.com/developerworks/linux/library/l-magic.html
http://www.ibm.com/developerworks/linux/
http://www.kernel.org/pub/software/scm/cogito/
http://www.kernel.org/
http://www.ibm.com/developerworks/offers/sek/?S_TACT=105AGX03
http://www.ibm.com/developerworks/downloads/?S_TACT=105AGX03
http://www.kernelnewbies.org/
http://kerneltrap.org/
http://www.kerneltraffic.org/kernel-traffic/index.html
http://www.ibm.com/developerworks/blogs/
mailto:linam@tyst.nu
http://www.ibm.com/legal/copytrade.shtml

Valerie Henson
Val Henson works for the Linux Technology Center at IBM. She has more than five
years experience working on the Linux and Solaris operating systems, including a
year as a maintainer of part of the PowerPC Linux kernel tree. Contact Val at
val@nmt.edu.

ibm.com/developerWorks developerWorks®

Making your first hack
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 25 of 25

mailto:val@nmt.edu
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Before you start
	About this series
	About this tutorial
	Prerequisites

	Overview of the kernel source
	The source tree
	Where does it all come together?
	More details on the order of execution
	Finding things in the kernel source tree

	Understanding system calls
	System calls
	What's a system call?
	System calls in detail
	A system call example: 1
	A system call example: 2

	Your first kernel module
	Introduction
	Does your kernel support modules?
	A simple module skeleton
	The module/kernel interface
	Module parameters
	Writing a module that uses interrupts

	Creating, applying, and submitting patches
	Having a patch accepted
	How patches work
	Applying patches
	Creating a patch
	What to think about before submitting your patch
	Who to submit your patch to
	Distributing your patch
	Political considerations
	The alternative to diff and patch: Cogito

	Summary
	Resources
	About the authors

