Go to:
Gentoo Home
Documentation
Forums
Lists
Bugs
Planet
Store
Wiki
Get Gentoo!
Gentoo's Bugzilla – Attachment 430856 Details for
Bug 578394
PAX patch causes kernel build failure in ATOMIC64_OP macros
Home
|
New
–
[Ex]
|
Browse
|
Search
|
Privacy Policy
|
[?]
|
Reports
|
Requests
|
Help
|
New Account
|
Log In
[x]
|
Forgot Password
Login:
[x]
super.c generated from super.s
super.c (text/x-csrc), 150.11 KB, created by
Steve Arnold
on 2016-04-16 19:40:05 UTC
(
hide
)
Description:
super.c generated from super.s
Filename:
MIME Type:
Creator:
Steve Arnold
Created:
2016-04-16 19:40:05 UTC
Size:
150.11 KB
patch
obsolete
>/* > * linux/fs/ext4/super.c > * > * Copyright (C) 1992, 1993, 1994, 1995 > * Remy Card (card@masi.ibp.fr) > * Laboratoire MASI - Institut Blaise Pascal > * Universite Pierre et Marie Curie (Paris VI) > * > * from > * > * linux/fs/minix/inode.c > * > * Copyright (C) 1991, 1992 Linus Torvalds > * > * Big-endian to little-endian byte-swapping/bitmaps by > * David S. Miller (davem@caip.rutgers.edu), 1995 > */ > >#include <linux/module.h> >#include <linux/string.h> >#include <linux/fs.h> >#include <linux/time.h> >#include <linux/vmalloc.h> >#include <linux/slab.h> >#include <linux/init.h> >#include <linux/blkdev.h> >#include <linux/backing-dev.h> >#include <linux/parser.h> >#include <linux/buffer_head.h> >#include <linux/exportfs.h> >#include <linux/vfs.h> >#include <linux/random.h> >#include <linux/mount.h> >#include <linux/namei.h> >#include <linux/quotaops.h> >#include <linux/seq_file.h> >#include <linux/ctype.h> >#include <linux/log2.h> >#include <linux/crc16.h> >#include <linux/cleancache.h> >#include <asm/uaccess.h> > >#include <linux/kthread.h> >#include <linux/freezer.h> > >#include "ext4.h" >#include "ext4_extents.h" /* Needed for trace points definition */ >#include "ext4_jbd2.h" >#include "xattr.h" >#include "acl.h" >#include "mballoc.h" > >#define CREATE_TRACE_POINTS >#include <trace/events/ext4.h> > >static struct ext4_lazy_init *ext4_li_info; >static struct mutex ext4_li_mtx; >static int ext4_mballoc_ready; >static struct ratelimit_state ext4_mount_msg_ratelimit; > >static int ext4_load_journal(struct super_block *, struct ext4_super_block *, > unsigned long journal_devnum); >static int ext4_show_options(struct seq_file *seq, struct dentry *root); >static int ext4_commit_super(struct super_block *sb, int sync); >static void ext4_mark_recovery_complete(struct super_block *sb, > struct ext4_super_block *es); >static void ext4_clear_journal_err(struct super_block *sb, > struct ext4_super_block *es); >static int ext4_sync_fs(struct super_block *sb, int wait); >static int ext4_remount(struct super_block *sb, int *flags, char *data); >static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); >static int ext4_unfreeze(struct super_block *sb); >static int ext4_freeze(struct super_block *sb); >static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, > const char *dev_name, void *data); >static inline int ext2_feature_set_ok(struct super_block *sb); >static inline int ext3_feature_set_ok(struct super_block *sb); >static int ext4_feature_set_ok(struct super_block *sb, int readonly); >static void ext4_destroy_lazyinit_thread(void); >static void ext4_unregister_li_request(struct super_block *sb); >static void ext4_clear_request_list(void); > >#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) >static struct file_system_type ext2_fs_type = { > .owner = THIS_MODULE, > .name = "ext2", > .mount = ext4_mount, > .kill_sb = kill_block_super, > .fs_flags = FS_REQUIRES_DEV, >}; >MODULE_ALIAS_FS("ext2"); >MODULE_ALIAS("ext2"); >#define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) >#else >#define IS_EXT2_SB(sb) (0) >#endif > > >static struct file_system_type ext3_fs_type = { > .owner = THIS_MODULE, > .name = "ext3", > .mount = ext4_mount, > .kill_sb = kill_block_super, > .fs_flags = FS_REQUIRES_DEV, >}; >MODULE_ALIAS_FS("ext3"); >MODULE_ALIAS("ext3"); >#define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) > >static int ext4_verify_csum_type(struct super_block *sb, > struct ext4_super_block *es) >{ > if (!ext4_has_feature_metadata_csum(sb)) > return 1; > > return es->s_checksum_type == EXT4_CRC32C_CHKSUM; >} > >static __le32 ext4_superblock_csum(struct super_block *sb, > struct ext4_super_block *es) >{ > struct ext4_sb_info *sbi = EXT4_SB(sb); > int offset = offsetof(struct ext4_super_block, s_checksum); > __u32 csum; > > csum = ext4_chksum(sbi, ~0, (char *)es, offset); > > return cpu_to_le32(csum); >} > >static int ext4_superblock_csum_verify(struct super_block *sb, > struct ext4_super_block *es) >{ > if (!ext4_has_metadata_csum(sb)) > return 1; > > return es->s_checksum == ext4_superblock_csum(sb, es); >} > >void ext4_superblock_csum_set(struct super_block *sb) >{ > struct ext4_super_block *es = EXT4_SB(sb)->s_es; > > if (!ext4_has_metadata_csum(sb)) > return; > > es->s_checksum = ext4_superblock_csum(sb, es); >} > >void *ext4_kvmalloc(size_t size, gfp_t flags) >{ > void *ret; > > ret = kmalloc(size, flags | __GFP_NOWARN); > if (!ret) > ret = __vmalloc(size, flags, PAGE_KERNEL); > return ret; >} > >void *ext4_kvzalloc(size_t size, gfp_t flags) >{ > void *ret; > > ret = kzalloc(size, flags | __GFP_NOWARN); > if (!ret) > ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); > return ret; >} > >ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, > struct ext4_group_desc *bg) >{ > return le32_to_cpu(bg->bg_block_bitmap_lo) | > (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? > (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); >} > >ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, > struct ext4_group_desc *bg) >{ > return le32_to_cpu(bg->bg_inode_bitmap_lo) | > (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? > (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); >} > >ext4_fsblk_t ext4_inode_table(struct super_block *sb, > struct ext4_group_desc *bg) >{ > return le32_to_cpu(bg->bg_inode_table_lo) | > (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? > (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); >} > >__u32 ext4_free_group_clusters(struct super_block *sb, > struct ext4_group_desc *bg) >{ > return le16_to_cpu(bg->bg_free_blocks_count_lo) | > (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? > (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); >} > >__u32 ext4_free_inodes_count(struct super_block *sb, > struct ext4_group_desc *bg) >{ > return le16_to_cpu(bg->bg_free_inodes_count_lo) | > (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? > (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); >} > >__u32 ext4_used_dirs_count(struct super_block *sb, > struct ext4_group_desc *bg) >{ > return le16_to_cpu(bg->bg_used_dirs_count_lo) | > (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? > (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); >} > >__u32 ext4_itable_unused_count(struct super_block *sb, > struct ext4_group_desc *bg) >{ > return le16_to_cpu(bg->bg_itable_unused_lo) | > (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? > (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); >} > >void ext4_block_bitmap_set(struct super_block *sb, > struct ext4_group_desc *bg, ext4_fsblk_t blk) >{ > bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); > if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) > bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); >} > >void ext4_inode_bitmap_set(struct super_block *sb, > struct ext4_group_desc *bg, ext4_fsblk_t blk) >{ > bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); > if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) > bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); >} > >void ext4_inode_table_set(struct super_block *sb, > struct ext4_group_desc *bg, ext4_fsblk_t blk) >{ > bg->bg_inode_table_lo = cpu_to_le32((u32)blk); > if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) > bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); >} > >void ext4_free_group_clusters_set(struct super_block *sb, > struct ext4_group_desc *bg, __u32 count) >{ > bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); > if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) > bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); >} > >void ext4_free_inodes_set(struct super_block *sb, > struct ext4_group_desc *bg, __u32 count) >{ > bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); > if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) > bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); >} > >void ext4_used_dirs_set(struct super_block *sb, > struct ext4_group_desc *bg, __u32 count) >{ > bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); > if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) > bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); >} > >void ext4_itable_unused_set(struct super_block *sb, > struct ext4_group_desc *bg, __u32 count) >{ > bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); > if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) > bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); >} > > >static void __save_error_info(struct super_block *sb, const char *func, > unsigned int line) >{ > struct ext4_super_block *es = EXT4_SB(sb)->s_es; > > EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; > if (bdev_read_only(sb->s_bdev)) > return; > es->s_state |= cpu_to_le16(EXT4_ERROR_FS); > es->s_last_error_time = cpu_to_le32(get_seconds()); > strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); > es->s_last_error_line = cpu_to_le32(line); > if (!es->s_first_error_time) { > es->s_first_error_time = es->s_last_error_time; > strncpy(es->s_first_error_func, func, > sizeof(es->s_first_error_func)); > es->s_first_error_line = cpu_to_le32(line); > es->s_first_error_ino = es->s_last_error_ino; > es->s_first_error_block = es->s_last_error_block; > } > /* > * Start the daily error reporting function if it hasn't been > * started already > */ > if (!es->s_error_count) > mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); > le32_add_cpu(&es->s_error_count, 1); >} > >static void save_error_info(struct super_block *sb, const char *func, > unsigned int line) >{ > __save_error_info(sb, func, line); > ext4_commit_super(sb, 1); >} > >/* > * The del_gendisk() function uninitializes the disk-specific data > * structures, including the bdi structure, without telling anyone > * else. Once this happens, any attempt to call mark_buffer_dirty() > * (for example, by ext4_commit_super), will cause a kernel OOPS. > * This is a kludge to prevent these oops until we can put in a proper > * hook in del_gendisk() to inform the VFS and file system layers. > */ >static int block_device_ejected(struct super_block *sb) >{ > struct inode *bd_inode = sb->s_bdev->bd_inode; > struct backing_dev_info *bdi = inode_to_bdi(bd_inode); > > return bdi->dev == NULL; >} > >static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) >{ > struct super_block *sb = journal->j_private; > struct ext4_sb_info *sbi = EXT4_SB(sb); > int error = is_journal_aborted(journal); > struct ext4_journal_cb_entry *jce; > > BUG_ON(txn->t_state == T_FINISHED); > spin_lock(&sbi->s_md_lock); > while (!list_empty(&txn->t_private_list)) { > jce = list_entry(txn->t_private_list.next, > struct ext4_journal_cb_entry, jce_list); > list_del_init(&jce->jce_list); > spin_unlock(&sbi->s_md_lock); > jce->jce_func(sb, jce, error); > spin_lock(&sbi->s_md_lock); > } > spin_unlock(&sbi->s_md_lock); >} > >/* Deal with the reporting of failure conditions on a filesystem such as > * inconsistencies detected or read IO failures. > * > * On ext2, we can store the error state of the filesystem in the > * superblock. That is not possible on ext4, because we may have other > * write ordering constraints on the superblock which prevent us from > * writing it out straight away; and given that the journal is about to > * be aborted, we can't rely on the current, or future, transactions to > * write out the superblock safely. > * > * We'll just use the jbd2_journal_abort() error code to record an error in > * the journal instead. On recovery, the journal will complain about > * that error until we've noted it down and cleared it. > */ > >static void ext4_handle_error(struct super_block *sb) >{ > if (sb->s_flags & MS_RDONLY) > return; > > if (!test_opt(sb, ERRORS_CONT)) { > journal_t *journal = EXT4_SB(sb)->s_journal; > > EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; > if (journal) > jbd2_journal_abort(journal, -EIO); > } > if (test_opt(sb, ERRORS_RO)) { > ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); > /* > * Make sure updated value of ->s_mount_flags will be visible > * before ->s_flags update > */ > smp_wmb(); > sb->s_flags |= MS_RDONLY; > } > if (test_opt(sb, ERRORS_PANIC)) { > if (EXT4_SB(sb)->s_journal && > !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) > return; > panic("EXT4-fs (device %s): panic forced after error\n", > sb->s_id); > } >} > >#define ext4_error_ratelimit(sb) \ > ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ > "EXT4-fs error") > >void __ext4_error(struct super_block *sb, const char *function, > unsigned int line, const char *fmt, ...) >{ > struct va_format vaf; > va_list args; > > if (ext4_error_ratelimit(sb)) { > va_start(args, fmt); > vaf.fmt = fmt; > vaf.va = &args; > printk(KERN_CRIT > "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", > sb->s_id, function, line, current->comm, &vaf); > va_end(args); > } > save_error_info(sb, function, line); > ext4_handle_error(sb); >} > >void __ext4_error_inode(struct inode *inode, const char *function, > unsigned int line, ext4_fsblk_t block, > const char *fmt, ...) >{ > va_list args; > struct va_format vaf; > struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; > > es->s_last_error_ino = cpu_to_le32(inode->i_ino); > es->s_last_error_block = cpu_to_le64(block); > if (ext4_error_ratelimit(inode->i_sb)) { > va_start(args, fmt); > vaf.fmt = fmt; > vaf.va = &args; > if (block) > printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " > "inode #%lu: block %llu: comm %s: %pV\n", > inode->i_sb->s_id, function, line, inode->i_ino, > block, current->comm, &vaf); > else > printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " > "inode #%lu: comm %s: %pV\n", > inode->i_sb->s_id, function, line, inode->i_ino, > current->comm, &vaf); > va_end(args); > } > save_error_info(inode->i_sb, function, line); > ext4_handle_error(inode->i_sb); >} > >void __ext4_error_file(struct file *file, const char *function, > unsigned int line, ext4_fsblk_t block, > const char *fmt, ...) >{ > va_list args; > struct va_format vaf; > struct ext4_super_block *es; > struct inode *inode = file_inode(file); > char pathname[80], *path; > > es = EXT4_SB(inode->i_sb)->s_es; > es->s_last_error_ino = cpu_to_le32(inode->i_ino); > if (ext4_error_ratelimit(inode->i_sb)) { > path = file_path(file, pathname, sizeof(pathname)); > if (IS_ERR(path)) > path = "(unknown)"; > va_start(args, fmt); > vaf.fmt = fmt; > vaf.va = &args; > if (block) > printk(KERN_CRIT > "EXT4-fs error (device %s): %s:%d: inode #%lu: " > "block %llu: comm %s: path %s: %pV\n", > inode->i_sb->s_id, function, line, inode->i_ino, > block, current->comm, path, &vaf); > else > printk(KERN_CRIT > "EXT4-fs error (device %s): %s:%d: inode #%lu: " > "comm %s: path %s: %pV\n", > inode->i_sb->s_id, function, line, inode->i_ino, > current->comm, path, &vaf); > va_end(args); > } > save_error_info(inode->i_sb, function, line); > ext4_handle_error(inode->i_sb); >} > >const char *ext4_decode_error(struct super_block *sb, int errno, > char nbuf[16]) >{ > char *errstr = NULL; > > switch (errno) { > case -EFSCORRUPTED: > errstr = "Corrupt filesystem"; > break; > case -EFSBADCRC: > errstr = "Filesystem failed CRC"; > break; > case -EIO: > errstr = "IO failure"; > break; > case -ENOMEM: > errstr = "Out of memory"; > break; > case -EROFS: > if (!sb || (EXT4_SB(sb)->s_journal && > EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) > errstr = "Journal has aborted"; > else > errstr = "Readonly filesystem"; > break; > default: > /* If the caller passed in an extra buffer for unknown > * errors, textualise them now. Else we just return > * NULL. */ > if (nbuf) { > /* Check for truncated error codes... */ > if (snprintf(nbuf, 16, "error %d", -errno) >= 0) > errstr = nbuf; > } > break; > } > > return errstr; >} > >/* __ext4_std_error decodes expected errors from journaling functions > * automatically and invokes the appropriate error response. */ > >void __ext4_std_error(struct super_block *sb, const char *function, > unsigned int line, int errno) >{ > char nbuf[16]; > const char *errstr; > > /* Special case: if the error is EROFS, and we're not already > * inside a transaction, then there's really no point in logging > * an error. */ > if (errno == -EROFS && journal_current_handle() == NULL && > (sb->s_flags & MS_RDONLY)) > return; > > if (ext4_error_ratelimit(sb)) { > errstr = ext4_decode_error(sb, errno, nbuf); > printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", > sb->s_id, function, line, errstr); > } > > save_error_info(sb, function, line); > ext4_handle_error(sb); >} > >/* > * ext4_abort is a much stronger failure handler than ext4_error. The > * abort function may be used to deal with unrecoverable failures such > * as journal IO errors or ENOMEM at a critical moment in log management. > * > * We unconditionally force the filesystem into an ABORT|READONLY state, > * unless the error response on the fs has been set to panic in which > * case we take the easy way out and panic immediately. > */ > >void __ext4_abort(struct super_block *sb, const char *function, > unsigned int line, const char *fmt, ...) >{ > va_list args; > > save_error_info(sb, function, line); > va_start(args, fmt); > printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id, > function, line); > vprintk(fmt, args); > printk("\n"); > va_end(args); > > if ((sb->s_flags & MS_RDONLY) == 0) { > ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); > EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; > /* > * Make sure updated value of ->s_mount_flags will be visible > * before ->s_flags update > */ > smp_wmb(); > sb->s_flags |= MS_RDONLY; > if (EXT4_SB(sb)->s_journal) > jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); > save_error_info(sb, function, line); > } > if (test_opt(sb, ERRORS_PANIC)) { > if (EXT4_SB(sb)->s_journal && > !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) > return; > panic("EXT4-fs panic from previous error\n"); > } >} > >void __ext4_msg(struct super_block *sb, > const char *prefix, const char *fmt, ...) >{ > struct va_format vaf; > va_list args; > > if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) > return; > > va_start(args, fmt); > vaf.fmt = fmt; > vaf.va = &args; > printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); > va_end(args); >} > >#define ext4_warning_ratelimit(sb) \ > ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \ > "EXT4-fs warning") > >void __ext4_warning(struct super_block *sb, const char *function, > unsigned int line, const char *fmt, ...) >{ > struct va_format vaf; > va_list args; > > if (!ext4_warning_ratelimit(sb)) > return; > > va_start(args, fmt); > vaf.fmt = fmt; > vaf.va = &args; > printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", > sb->s_id, function, line, &vaf); > va_end(args); >} > >void __ext4_warning_inode(const struct inode *inode, const char *function, > unsigned int line, const char *fmt, ...) >{ > struct va_format vaf; > va_list args; > > if (!ext4_warning_ratelimit(inode->i_sb)) > return; > > va_start(args, fmt); > vaf.fmt = fmt; > vaf.va = &args; > printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " > "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, > function, line, inode->i_ino, current->comm, &vaf); > va_end(args); >} > >void __ext4_grp_locked_error(const char *function, unsigned int line, > struct super_block *sb, ext4_group_t grp, > unsigned long ino, ext4_fsblk_t block, > const char *fmt, ...) >__releases(bitlock) >__acquires(bitlock) >{ > struct va_format vaf; > va_list args; > struct ext4_super_block *es = EXT4_SB(sb)->s_es; > > es->s_last_error_ino = cpu_to_le32(ino); > es->s_last_error_block = cpu_to_le64(block); > __save_error_info(sb, function, line); > > if (ext4_error_ratelimit(sb)) { > va_start(args, fmt); > vaf.fmt = fmt; > vaf.va = &args; > printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", > sb->s_id, function, line, grp); > if (ino) > printk(KERN_CONT "inode %lu: ", ino); > if (block) > printk(KERN_CONT "block %llu:", > (unsigned long long) block); > printk(KERN_CONT "%pV\n", &vaf); > va_end(args); > } > > if (test_opt(sb, ERRORS_CONT)) { > ext4_commit_super(sb, 0); > return; > } > > ext4_unlock_group(sb, grp); > ext4_handle_error(sb); > /* > * We only get here in the ERRORS_RO case; relocking the group > * may be dangerous, but nothing bad will happen since the > * filesystem will have already been marked read/only and the > * journal has been aborted. We return 1 as a hint to callers > * who might what to use the return value from > * ext4_grp_locked_error() to distinguish between the > * ERRORS_CONT and ERRORS_RO case, and perhaps return more > * aggressively from the ext4 function in question, with a > * more appropriate error code. > */ > ext4_lock_group(sb, grp); > return; >} > >void ext4_update_dynamic_rev(struct super_block *sb) >{ > struct ext4_super_block *es = EXT4_SB(sb)->s_es; > > if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) > return; > > ext4_warning(sb, > "updating to rev %d because of new feature flag, " > "running e2fsck is recommended", > EXT4_DYNAMIC_REV); > > es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); > es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); > es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); > /* leave es->s_feature_*compat flags alone */ > /* es->s_uuid will be set by e2fsck if empty */ > > /* > * The rest of the superblock fields should be zero, and if not it > * means they are likely already in use, so leave them alone. We > * can leave it up to e2fsck to clean up any inconsistencies there. > */ >} > >/* > * Open the external journal device > */ >static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) >{ > struct block_device *bdev; > char b[BDEVNAME_SIZE]; > > bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); > if (IS_ERR(bdev)) > goto fail; > return bdev; > >fail: > ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", > __bdevname(dev, b), PTR_ERR(bdev)); > return NULL; >} > >/* > * Release the journal device > */ >static void ext4_blkdev_put(struct block_device *bdev) >{ > blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); >} > >static void ext4_blkdev_remove(struct ext4_sb_info *sbi) >{ > struct block_device *bdev; > bdev = sbi->journal_bdev; > if (bdev) { > ext4_blkdev_put(bdev); > sbi->journal_bdev = NULL; > } >} > >static inline struct inode *orphan_list_entry(struct list_head *l) >{ > return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; >} > >static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) >{ > struct list_head *l; > > ext4_msg(sb, KERN_ERR, "sb orphan head is %d", > le32_to_cpu(sbi->s_es->s_last_orphan)); > > printk(KERN_ERR "sb_info orphan list:\n"); > list_for_each(l, &sbi->s_orphan) { > struct inode *inode = orphan_list_entry(l); > printk(KERN_ERR " " > "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", > inode->i_sb->s_id, inode->i_ino, inode, > inode->i_mode, inode->i_nlink, > NEXT_ORPHAN(inode)); > } >} > >static void ext4_put_super(struct super_block *sb) >{ > struct ext4_sb_info *sbi = EXT4_SB(sb); > struct ext4_super_block *es = sbi->s_es; > int i, err; > > ext4_unregister_li_request(sb); > dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); > > flush_workqueue(sbi->rsv_conversion_wq); > destroy_workqueue(sbi->rsv_conversion_wq); > > if (sbi->s_journal) { > err = jbd2_journal_destroy(sbi->s_journal); > sbi->s_journal = NULL; > if (err < 0) > ext4_abort(sb, "Couldn't clean up the journal"); > } > > ext4_unregister_sysfs(sb); > ext4_es_unregister_shrinker(sbi); > del_timer_sync(&sbi->s_err_report); > ext4_release_system_zone(sb); > ext4_mb_release(sb); > ext4_ext_release(sb); > ext4_xattr_put_super(sb); > > if (!(sb->s_flags & MS_RDONLY)) { > ext4_clear_feature_journal_needs_recovery(sb); > es->s_state = cpu_to_le16(sbi->s_mount_state); > } > if (!(sb->s_flags & MS_RDONLY)) > ext4_commit_super(sb, 1); > > for (i = 0; i < sbi->s_gdb_count; i++) > brelse(sbi->s_group_desc[i]); > kvfree(sbi->s_group_desc); > kvfree(sbi->s_flex_groups); > percpu_counter_destroy(&sbi->s_freeclusters_counter); > percpu_counter_destroy(&sbi->s_freeinodes_counter); > percpu_counter_destroy(&sbi->s_dirs_counter); > percpu_counter_destroy(&sbi->s_dirtyclusters_counter); > brelse(sbi->s_sbh); >#ifdef CONFIG_QUOTA > for (i = 0; i < EXT4_MAXQUOTAS; i++) > kfree(sbi->s_qf_names[i]); >#endif > > /* Debugging code just in case the in-memory inode orphan list > * isn't empty. The on-disk one can be non-empty if we've > * detected an error and taken the fs readonly, but the > * in-memory list had better be clean by this point. */ > if (!list_empty(&sbi->s_orphan)) > dump_orphan_list(sb, sbi); > J_ASSERT(list_empty(&sbi->s_orphan)); > > sync_blockdev(sb->s_bdev); > invalidate_bdev(sb->s_bdev); > if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { > /* > * Invalidate the journal device's buffers. We don't want them > * floating about in memory - the physical journal device may > * hotswapped, and it breaks the `ro-after' testing code. > */ > sync_blockdev(sbi->journal_bdev); > invalidate_bdev(sbi->journal_bdev); > ext4_blkdev_remove(sbi); > } > if (sbi->s_mb_cache) { > ext4_xattr_destroy_cache(sbi->s_mb_cache); > sbi->s_mb_cache = NULL; > } > if (sbi->s_mmp_tsk) > kthread_stop(sbi->s_mmp_tsk); > sb->s_fs_info = NULL; > /* > * Now that we are completely done shutting down the > * superblock, we need to actually destroy the kobject. > */ > kobject_put(&sbi->s_kobj); > wait_for_completion(&sbi->s_kobj_unregister); > if (sbi->s_chksum_driver) > crypto_free_shash(sbi->s_chksum_driver); > kfree(sbi->s_blockgroup_lock); > kfree(sbi); >} > >static struct kmem_cache *ext4_inode_cachep; > >/* > * Called inside transaction, so use GFP_NOFS > */ >static struct inode *ext4_alloc_inode(struct super_block *sb) >{ > struct ext4_inode_info *ei; > > ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); > if (!ei) > return NULL; > > ei->vfs_inode.i_version = 1; > spin_lock_init(&ei->i_raw_lock); > INIT_LIST_HEAD(&ei->i_prealloc_list); > spin_lock_init(&ei->i_prealloc_lock); > ext4_es_init_tree(&ei->i_es_tree); > rwlock_init(&ei->i_es_lock); > INIT_LIST_HEAD(&ei->i_es_list); > ei->i_es_all_nr = 0; > ei->i_es_shk_nr = 0; > ei->i_es_shrink_lblk = 0; > ei->i_reserved_data_blocks = 0; > ei->i_reserved_meta_blocks = 0; > ei->i_allocated_meta_blocks = 0; > ei->i_da_metadata_calc_len = 0; > ei->i_da_metadata_calc_last_lblock = 0; > spin_lock_init(&(ei->i_block_reservation_lock)); >#ifdef CONFIG_QUOTA > ei->i_reserved_quota = 0; > memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); >#endif > ei->jinode = NULL; > INIT_LIST_HEAD(&ei->i_rsv_conversion_list); > spin_lock_init(&ei->i_completed_io_lock); > ei->i_sync_tid = 0; > ei->i_datasync_tid = 0; > atomic_set(&ei->i_ioend_count, 0); > atomic_set(&ei->i_unwritten, 0); > INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); >#ifdef CONFIG_EXT4_FS_ENCRYPTION > ei->i_crypt_info = NULL; >#endif > return &ei->vfs_inode; >} > >static int ext4_drop_inode(struct inode *inode) >{ > int drop = generic_drop_inode(inode); > > trace_ext4_drop_inode(inode, drop); > return drop; >} > >static void ext4_i_callback(struct rcu_head *head) >{ > struct inode *inode = container_of(head, struct inode, i_rcu); > kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); >} > >static void ext4_destroy_inode(struct inode *inode) >{ > if (!list_empty(&(EXT4_I(inode)->i_orphan))) { > ext4_msg(inode->i_sb, KERN_ERR, > "Inode %lu (%p): orphan list check failed!", > inode->i_ino, EXT4_I(inode)); > print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, > EXT4_I(inode), sizeof(struct ext4_inode_info), > true); > dump_stack(); > } > call_rcu(&inode->i_rcu, ext4_i_callback); >} > >static void init_once(void *foo) >{ > struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; > > INIT_LIST_HEAD(&ei->i_orphan); > init_rwsem(&ei->xattr_sem); > init_rwsem(&ei->i_data_sem); > inode_init_once(&ei->vfs_inode); >} > >static int __init init_inodecache(void) >{ > ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", > sizeof(struct ext4_inode_info), > 0, (SLAB_RECLAIM_ACCOUNT| > SLAB_MEM_SPREAD), > init_once); > if (ext4_inode_cachep == NULL) > return -ENOMEM; > return 0; >} > >static void destroy_inodecache(void) >{ > /* > * Make sure all delayed rcu free inodes are flushed before we > * destroy cache. > */ > rcu_barrier(); > kmem_cache_destroy(ext4_inode_cachep); >} > >void ext4_clear_inode(struct inode *inode) >{ > invalidate_inode_buffers(inode); > clear_inode(inode); > dquot_drop(inode); > ext4_discard_preallocations(inode); > ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); > if (EXT4_I(inode)->jinode) { > jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), > EXT4_I(inode)->jinode); > jbd2_free_inode(EXT4_I(inode)->jinode); > EXT4_I(inode)->jinode = NULL; > } >#ifdef CONFIG_EXT4_FS_ENCRYPTION > if (EXT4_I(inode)->i_crypt_info) > ext4_free_encryption_info(inode, EXT4_I(inode)->i_crypt_info); >#endif >} > >static struct inode *ext4_nfs_get_inode(struct super_block *sb, > u64 ino, u32 generation) >{ > struct inode *inode; > > if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) > return ERR_PTR(-ESTALE); > if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) > return ERR_PTR(-ESTALE); > > /* iget isn't really right if the inode is currently unallocated!! > * > * ext4_read_inode will return a bad_inode if the inode had been > * deleted, so we should be safe. > * > * Currently we don't know the generation for parent directory, so > * a generation of 0 means "accept any" > */ > inode = ext4_iget_normal(sb, ino); > if (IS_ERR(inode)) > return ERR_CAST(inode); > if (generation && inode->i_generation != generation) { > iput(inode); > return ERR_PTR(-ESTALE); > } > > return inode; >} > >static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, > int fh_len, int fh_type) >{ > return generic_fh_to_dentry(sb, fid, fh_len, fh_type, > ext4_nfs_get_inode); >} > >static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, > int fh_len, int fh_type) >{ > return generic_fh_to_parent(sb, fid, fh_len, fh_type, > ext4_nfs_get_inode); >} > >/* > * Try to release metadata pages (indirect blocks, directories) which are > * mapped via the block device. Since these pages could have journal heads > * which would prevent try_to_free_buffers() from freeing them, we must use > * jbd2 layer's try_to_free_buffers() function to release them. > */ >static int bdev_try_to_free_page(struct super_block *sb, struct page *page, > gfp_t wait) >{ > journal_t *journal = EXT4_SB(sb)->s_journal; > > WARN_ON(PageChecked(page)); > if (!page_has_buffers(page)) > return 0; > if (journal) > return jbd2_journal_try_to_free_buffers(journal, page, > wait & ~__GFP_DIRECT_RECLAIM); > return try_to_free_buffers(page); >} > >#ifdef CONFIG_QUOTA >#define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") >#define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) > >static int ext4_write_dquot(struct dquot *dquot); >static int ext4_acquire_dquot(struct dquot *dquot); >static int ext4_release_dquot(struct dquot *dquot); >static int ext4_mark_dquot_dirty(struct dquot *dquot); >static int ext4_write_info(struct super_block *sb, int type); >static int ext4_quota_on(struct super_block *sb, int type, int format_id, > struct path *path); >static int ext4_quota_off(struct super_block *sb, int type); >static int ext4_quota_on_mount(struct super_block *sb, int type); >static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, > size_t len, loff_t off); >static ssize_t ext4_quota_write(struct super_block *sb, int type, > const char *data, size_t len, loff_t off); >static int ext4_quota_enable(struct super_block *sb, int type, int format_id, > unsigned int flags); >static int ext4_enable_quotas(struct super_block *sb); > >static struct dquot **ext4_get_dquots(struct inode *inode) >{ > return EXT4_I(inode)->i_dquot; >} > >static const struct dquot_operations ext4_quota_operations = { > .get_reserved_space = ext4_get_reserved_space, > .write_dquot = ext4_write_dquot, > .acquire_dquot = ext4_acquire_dquot, > .release_dquot = ext4_release_dquot, > .mark_dirty = ext4_mark_dquot_dirty, > .write_info = ext4_write_info, > .alloc_dquot = dquot_alloc, > .destroy_dquot = dquot_destroy, >}; > >static const struct quotactl_ops ext4_qctl_operations = { > .quota_on = ext4_quota_on, > .quota_off = ext4_quota_off, > .quota_sync = dquot_quota_sync, > .get_state = dquot_get_state, > .set_info = dquot_set_dqinfo, > .get_dqblk = dquot_get_dqblk, > .set_dqblk = dquot_set_dqblk >}; >#endif > >static const struct super_operations ext4_sops = { > .alloc_inode = ext4_alloc_inode, > .destroy_inode = ext4_destroy_inode, > .write_inode = ext4_write_inode, > .dirty_inode = ext4_dirty_inode, > .drop_inode = ext4_drop_inode, > .evict_inode = ext4_evict_inode, > .put_super = ext4_put_super, > .sync_fs = ext4_sync_fs, > .freeze_fs = ext4_freeze, > .unfreeze_fs = ext4_unfreeze, > .statfs = ext4_statfs, > .remount_fs = ext4_remount, > .show_options = ext4_show_options, >#ifdef CONFIG_QUOTA > .quota_read = ext4_quota_read, > .quota_write = ext4_quota_write, > .get_dquots = ext4_get_dquots, >#endif > .bdev_try_to_free_page = bdev_try_to_free_page, >}; > >static const struct export_operations ext4_export_ops = { > .fh_to_dentry = ext4_fh_to_dentry, > .fh_to_parent = ext4_fh_to_parent, > .get_parent = ext4_get_parent, >}; > >enum { > Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, > Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, > Opt_nouid32, Opt_debug, Opt_removed, > Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, > Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, > Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, > Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, > Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, > Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, > Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, > Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, > Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, > Opt_usrquota, Opt_grpquota, Opt_i_version, Opt_dax, > Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, > Opt_lazytime, Opt_nolazytime, > Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, > Opt_inode_readahead_blks, Opt_journal_ioprio, > Opt_dioread_nolock, Opt_dioread_lock, > Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, > Opt_max_dir_size_kb, Opt_nojournal_checksum, >}; > >static const match_table_t tokens = { > {Opt_bsd_df, "bsddf"}, > {Opt_minix_df, "minixdf"}, > {Opt_grpid, "grpid"}, > {Opt_grpid, "bsdgroups"}, > {Opt_nogrpid, "nogrpid"}, > {Opt_nogrpid, "sysvgroups"}, > {Opt_resgid, "resgid=%u"}, > {Opt_resuid, "resuid=%u"}, > {Opt_sb, "sb=%u"}, > {Opt_err_cont, "errors=continue"}, > {Opt_err_panic, "errors=panic"}, > {Opt_err_ro, "errors=remount-ro"}, > {Opt_nouid32, "nouid32"}, > {Opt_debug, "debug"}, > {Opt_removed, "oldalloc"}, > {Opt_removed, "orlov"}, > {Opt_user_xattr, "user_xattr"}, > {Opt_nouser_xattr, "nouser_xattr"}, > {Opt_acl, "acl"}, > {Opt_noacl, "noacl"}, > {Opt_noload, "norecovery"}, > {Opt_noload, "noload"}, > {Opt_removed, "nobh"}, > {Opt_removed, "bh"}, > {Opt_commit, "commit=%u"}, > {Opt_min_batch_time, "min_batch_time=%u"}, > {Opt_max_batch_time, "max_batch_time=%u"}, > {Opt_journal_dev, "journal_dev=%u"}, > {Opt_journal_path, "journal_path=%s"}, > {Opt_journal_checksum, "journal_checksum"}, > {Opt_nojournal_checksum, "nojournal_checksum"}, > {Opt_journal_async_commit, "journal_async_commit"}, > {Opt_abort, "abort"}, > {Opt_data_journal, "data=journal"}, > {Opt_data_ordered, "data=ordered"}, > {Opt_data_writeback, "data=writeback"}, > {Opt_data_err_abort, "data_err=abort"}, > {Opt_data_err_ignore, "data_err=ignore"}, > {Opt_offusrjquota, "usrjquota="}, > {Opt_usrjquota, "usrjquota=%s"}, > {Opt_offgrpjquota, "grpjquota="}, > {Opt_grpjquota, "grpjquota=%s"}, > {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, > {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, > {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, > {Opt_grpquota, "grpquota"}, > {Opt_noquota, "noquota"}, > {Opt_quota, "quota"}, > {Opt_usrquota, "usrquota"}, > {Opt_barrier, "barrier=%u"}, > {Opt_barrier, "barrier"}, > {Opt_nobarrier, "nobarrier"}, > {Opt_i_version, "i_version"}, > {Opt_dax, "dax"}, > {Opt_stripe, "stripe=%u"}, > {Opt_delalloc, "delalloc"}, > {Opt_lazytime, "lazytime"}, > {Opt_nolazytime, "nolazytime"}, > {Opt_nodelalloc, "nodelalloc"}, > {Opt_removed, "mblk_io_submit"}, > {Opt_removed, "nomblk_io_submit"}, > {Opt_block_validity, "block_validity"}, > {Opt_noblock_validity, "noblock_validity"}, > {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, > {Opt_journal_ioprio, "journal_ioprio=%u"}, > {Opt_auto_da_alloc, "auto_da_alloc=%u"}, > {Opt_auto_da_alloc, "auto_da_alloc"}, > {Opt_noauto_da_alloc, "noauto_da_alloc"}, > {Opt_dioread_nolock, "dioread_nolock"}, > {Opt_dioread_lock, "dioread_lock"}, > {Opt_discard, "discard"}, > {Opt_nodiscard, "nodiscard"}, > {Opt_init_itable, "init_itable=%u"}, > {Opt_init_itable, "init_itable"}, > {Opt_noinit_itable, "noinit_itable"}, > {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, > {Opt_test_dummy_encryption, "test_dummy_encryption"}, > {Opt_removed, "check=none"}, /* mount option from ext2/3 */ > {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ > {Opt_removed, "reservation"}, /* mount option from ext2/3 */ > {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ > {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ > {Opt_err, NULL}, >}; > >static ext4_fsblk_t get_sb_block(void **data) >{ > ext4_fsblk_t sb_block; > char *options = (char *) *data; > > if (!options || strncmp(options, "sb=", 3) != 0) > return 1; /* Default location */ > > options += 3; > /* TODO: use simple_strtoll with >32bit ext4 */ > sb_block = simple_strtoul(options, &options, 0); > if (*options && *options != ',') { > printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", > (char *) *data); > return 1; > } > if (*options == ',') > options++; > *data = (void *) options; > > return sb_block; >} > >#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) >static const char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" > "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; > >#ifdef CONFIG_QUOTA >static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) >{ > struct ext4_sb_info *sbi = EXT4_SB(sb); > char *qname; > int ret = -1; > > if (sb_any_quota_loaded(sb) && > !sbi->s_qf_names[qtype]) { > ext4_msg(sb, KERN_ERR, > "Cannot change journaled " > "quota options when quota turned on"); > return -1; > } > if (ext4_has_feature_quota(sb)) { > ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options " > "when QUOTA feature is enabled"); > return -1; > } > qname = match_strdup(args); > if (!qname) { > ext4_msg(sb, KERN_ERR, > "Not enough memory for storing quotafile name"); > return -1; > } > if (sbi->s_qf_names[qtype]) { > if (strcmp(sbi->s_qf_names[qtype], qname) == 0) > ret = 1; > else > ext4_msg(sb, KERN_ERR, > "%s quota file already specified", > QTYPE2NAME(qtype)); > goto errout; > } > if (strchr(qname, '/')) { > ext4_msg(sb, KERN_ERR, > "quotafile must be on filesystem root"); > goto errout; > } > sbi->s_qf_names[qtype] = qname; > set_opt(sb, QUOTA); > return 1; >errout: > kfree(qname); > return ret; >} > >static int clear_qf_name(struct super_block *sb, int qtype) >{ > > struct ext4_sb_info *sbi = EXT4_SB(sb); > > if (sb_any_quota_loaded(sb) && > sbi->s_qf_names[qtype]) { > ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" > " when quota turned on"); > return -1; > } > kfree(sbi->s_qf_names[qtype]); > sbi->s_qf_names[qtype] = NULL; > return 1; >} >#endif > >#define MOPT_SET 0x0001 >#define MOPT_CLEAR 0x0002 >#define MOPT_NOSUPPORT 0x0004 >#define MOPT_EXPLICIT 0x0008 >#define MOPT_CLEAR_ERR 0x0010 >#define MOPT_GTE0 0x0020 >#ifdef CONFIG_QUOTA >#define MOPT_Q 0 >#define MOPT_QFMT 0x0040 >#else >#define MOPT_Q MOPT_NOSUPPORT >#define MOPT_QFMT MOPT_NOSUPPORT >#endif >#define MOPT_DATAJ 0x0080 >#define MOPT_NO_EXT2 0x0100 >#define MOPT_NO_EXT3 0x0200 >#define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) >#define MOPT_STRING 0x0400 > >static const struct mount_opts { > int token; > int mount_opt; > int flags; >} ext4_mount_opts[] = { > {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, > {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, > {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, > {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, > {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, > {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, > {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, > MOPT_EXT4_ONLY | MOPT_SET}, > {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, > MOPT_EXT4_ONLY | MOPT_CLEAR}, > {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, > {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, > {Opt_delalloc, EXT4_MOUNT_DELALLOC, > MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, > {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, > MOPT_EXT4_ONLY | MOPT_CLEAR}, > {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, > MOPT_EXT4_ONLY | MOPT_CLEAR}, > {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, > MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, > {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | > EXT4_MOUNT_JOURNAL_CHECKSUM), > MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, > {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, > {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, > {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, > {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, > {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, > MOPT_NO_EXT2 | MOPT_SET}, > {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, > MOPT_NO_EXT2 | MOPT_CLEAR}, > {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, > {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, > {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, > {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, > {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, > {Opt_commit, 0, MOPT_GTE0}, > {Opt_max_batch_time, 0, MOPT_GTE0}, > {Opt_min_batch_time, 0, MOPT_GTE0}, > {Opt_inode_readahead_blks, 0, MOPT_GTE0}, > {Opt_init_itable, 0, MOPT_GTE0}, > {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET}, > {Opt_stripe, 0, MOPT_GTE0}, > {Opt_resuid, 0, MOPT_GTE0}, > {Opt_resgid, 0, MOPT_GTE0}, > {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, > {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, > {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, > {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, > {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, > {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, > MOPT_NO_EXT2 | MOPT_DATAJ}, > {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, > {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, >#ifdef CONFIG_EXT4_FS_POSIX_ACL > {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, > {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, >#else > {Opt_acl, 0, MOPT_NOSUPPORT}, > {Opt_noacl, 0, MOPT_NOSUPPORT}, >#endif > {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, > {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, > {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, > {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, > MOPT_SET | MOPT_Q}, > {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, > MOPT_SET | MOPT_Q}, > {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | > EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q}, > {Opt_usrjquota, 0, MOPT_Q}, > {Opt_grpjquota, 0, MOPT_Q}, > {Opt_offusrjquota, 0, MOPT_Q}, > {Opt_offgrpjquota, 0, MOPT_Q}, > {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, > {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, > {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, > {Opt_max_dir_size_kb, 0, MOPT_GTE0}, > {Opt_test_dummy_encryption, 0, MOPT_GTE0}, > {Opt_err, 0, 0} >}; > >static int handle_mount_opt(struct super_block *sb, char *opt, int token, > substring_t *args, unsigned long *journal_devnum, > unsigned int *journal_ioprio, int is_remount) >{ > struct ext4_sb_info *sbi = EXT4_SB(sb); > const struct mount_opts *m; > kuid_t uid; > kgid_t gid; > int arg = 0; > >#ifdef CONFIG_QUOTA > if (token == Opt_usrjquota) > return set_qf_name(sb, USRQUOTA, &args[0]); > else if (token == Opt_grpjquota) > return set_qf_name(sb, GRPQUOTA, &args[0]); > else if (token == Opt_offusrjquota) > return clear_qf_name(sb, USRQUOTA); > else if (token == Opt_offgrpjquota) > return clear_qf_name(sb, GRPQUOTA); >#endif > switch (token) { > case Opt_noacl: > case Opt_nouser_xattr: > ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); > break; > case Opt_sb: > return 1; /* handled by get_sb_block() */ > case Opt_removed: > ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); > return 1; > case Opt_abort: > sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; > return 1; > case Opt_i_version: > sb->s_flags |= MS_I_VERSION; > return 1; > case Opt_lazytime: > sb->s_flags |= MS_LAZYTIME; > return 1; > case Opt_nolazytime: > sb->s_flags &= ~MS_LAZYTIME; > return 1; > } > > for (m = ext4_mount_opts; m->token != Opt_err; m++) > if (token == m->token) > break; > > if (m->token == Opt_err) { > ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " > "or missing value", opt); > return -1; > } > > if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { > ext4_msg(sb, KERN_ERR, > "Mount option \"%s\" incompatible with ext2", opt); > return -1; > } > if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { > ext4_msg(sb, KERN_ERR, > "Mount option \"%s\" incompatible with ext3", opt); > return -1; > } > > if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) > return -1; > if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) > return -1; > if (m->flags & MOPT_EXPLICIT) { > if (m->mount_opt & EXT4_MOUNT_DELALLOC) { > set_opt2(sb, EXPLICIT_DELALLOC); > } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { > set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); > } else > return -1; > } > if (m->flags & MOPT_CLEAR_ERR) > clear_opt(sb, ERRORS_MASK); > if (token == Opt_noquota && sb_any_quota_loaded(sb)) { > ext4_msg(sb, KERN_ERR, "Cannot change quota " > "options when quota turned on"); > return -1; > } > > if (m->flags & MOPT_NOSUPPORT) { > ext4_msg(sb, KERN_ERR, "%s option not supported", opt); > } else if (token == Opt_commit) { > if (arg == 0) > arg = JBD2_DEFAULT_MAX_COMMIT_AGE; > sbi->s_commit_interval = HZ * arg; > } else if (token == Opt_max_batch_time) { > sbi->s_max_batch_time = arg; > } else if (token == Opt_min_batch_time) { > sbi->s_min_batch_time = arg; > } else if (token == Opt_inode_readahead_blks) { > if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { > ext4_msg(sb, KERN_ERR, > "EXT4-fs: inode_readahead_blks must be " > "0 or a power of 2 smaller than 2^31"); > return -1; > } > sbi->s_inode_readahead_blks = arg; > } else if (token == Opt_init_itable) { > set_opt(sb, INIT_INODE_TABLE); > if (!args->from) > arg = EXT4_DEF_LI_WAIT_MULT; > sbi->s_li_wait_mult = arg; > } else if (token == Opt_max_dir_size_kb) { > sbi->s_max_dir_size_kb = arg; > } else if (token == Opt_stripe) { > sbi->s_stripe = arg; > } else if (token == Opt_resuid) { > uid = make_kuid(current_user_ns(), arg); > if (!uid_valid(uid)) { > ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); > return -1; > } > sbi->s_resuid = uid; > } else if (token == Opt_resgid) { > gid = make_kgid(current_user_ns(), arg); > if (!gid_valid(gid)) { > ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); > return -1; > } > sbi->s_resgid = gid; > } else if (token == Opt_journal_dev) { > if (is_remount) { > ext4_msg(sb, KERN_ERR, > "Cannot specify journal on remount"); > return -1; > } > *journal_devnum = arg; > } else if (token == Opt_journal_path) { > char *journal_path; > struct inode *journal_inode; > struct path path; > int error; > > if (is_remount) { > ext4_msg(sb, KERN_ERR, > "Cannot specify journal on remount"); > return -1; > } > journal_path = match_strdup(&args[0]); > if (!journal_path) { > ext4_msg(sb, KERN_ERR, "error: could not dup " > "journal device string"); > return -1; > } > > error = kern_path(journal_path, LOOKUP_FOLLOW, &path); > if (error) { > ext4_msg(sb, KERN_ERR, "error: could not find " > "journal device path: error %d", error); > kfree(journal_path); > return -1; > } > > journal_inode = d_inode(path.dentry); > if (!S_ISBLK(journal_inode->i_mode)) { > ext4_msg(sb, KERN_ERR, "error: journal path %s " > "is not a block device", journal_path); > path_put(&path); > kfree(journal_path); > return -1; > } > > *journal_devnum = new_encode_dev(journal_inode->i_rdev); > path_put(&path); > kfree(journal_path); > } else if (token == Opt_journal_ioprio) { > if (arg > 7) { > ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" > " (must be 0-7)"); > return -1; > } > *journal_ioprio = > IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); > } else if (token == Opt_test_dummy_encryption) { >#ifdef CONFIG_EXT4_FS_ENCRYPTION > sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION; > ext4_msg(sb, KERN_WARNING, > "Test dummy encryption mode enabled"); >#else > ext4_msg(sb, KERN_WARNING, > "Test dummy encryption mount option ignored"); >#endif > } else if (m->flags & MOPT_DATAJ) { > if (is_remount) { > if (!sbi->s_journal) > ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); > else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { > ext4_msg(sb, KERN_ERR, > "Cannot change data mode on remount"); > return -1; > } > } else { > clear_opt(sb, DATA_FLAGS); > sbi->s_mount_opt |= m->mount_opt; > } >#ifdef CONFIG_QUOTA > } else if (m->flags & MOPT_QFMT) { > if (sb_any_quota_loaded(sb) && > sbi->s_jquota_fmt != m->mount_opt) { > ext4_msg(sb, KERN_ERR, "Cannot change journaled " > "quota options when quota turned on"); > return -1; > } > if (ext4_has_feature_quota(sb)) { > ext4_msg(sb, KERN_ERR, > "Cannot set journaled quota options " > "when QUOTA feature is enabled"); > return -1; > } > sbi->s_jquota_fmt = m->mount_opt; >#endif > } else if (token == Opt_dax) { >#ifdef CONFIG_FS_DAX > ext4_msg(sb, KERN_WARNING, > "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); > sbi->s_mount_opt |= m->mount_opt; >#else > ext4_msg(sb, KERN_INFO, "dax option not supported"); > return -1; >#endif > } else { > if (!args->from) > arg = 1; > if (m->flags & MOPT_CLEAR) > arg = !arg; > else if (unlikely(!(m->flags & MOPT_SET))) { > ext4_msg(sb, KERN_WARNING, > "buggy handling of option %s", opt); > WARN_ON(1); > return -1; > } > if (arg != 0) > sbi->s_mount_opt |= m->mount_opt; > else > sbi->s_mount_opt &= ~m->mount_opt; > } > return 1; >} > >static int parse_options(char *options, struct super_block *sb, > unsigned long *journal_devnum, > unsigned int *journal_ioprio, > int is_remount) >{ > struct ext4_sb_info *sbi = EXT4_SB(sb); > char *p; > substring_t args[MAX_OPT_ARGS]; > int token; > > if (!options) > return 1; > > while ((p = strsep(&options, ",")) != NULL) { > if (!*p) > continue; > /* > * Initialize args struct so we know whether arg was > * found; some options take optional arguments. > */ > args[0].to = args[0].from = NULL; > token = match_token(p, tokens, args); > if (handle_mount_opt(sb, p, token, args, journal_devnum, > journal_ioprio, is_remount) < 0) > return 0; > } >#ifdef CONFIG_QUOTA > if (ext4_has_feature_quota(sb) && > (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) { > ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA " > "feature is enabled"); > return 0; > } > if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { > if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) > clear_opt(sb, USRQUOTA); > > if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) > clear_opt(sb, GRPQUOTA); > > if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { > ext4_msg(sb, KERN_ERR, "old and new quota " > "format mixing"); > return 0; > } > > if (!sbi->s_jquota_fmt) { > ext4_msg(sb, KERN_ERR, "journaled quota format " > "not specified"); > return 0; > } > } >#endif > if (test_opt(sb, DIOREAD_NOLOCK)) { > int blocksize = > BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); > > if (blocksize < PAGE_CACHE_SIZE) { > ext4_msg(sb, KERN_ERR, "can't mount with " > "dioread_nolock if block size != PAGE_SIZE"); > return 0; > } > } > if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && > test_opt(sb, JOURNAL_ASYNC_COMMIT)) { > ext4_msg(sb, KERN_ERR, "can't mount with journal_async_commit " > "in data=ordered mode"); > return 0; > } > return 1; >} > >static inline void ext4_show_quota_options(struct seq_file *seq, > struct super_block *sb) >{ >#if defined(CONFIG_QUOTA) > struct ext4_sb_info *sbi = EXT4_SB(sb); > > if (sbi->s_jquota_fmt) { > char *fmtname = ""; > > switch (sbi->s_jquota_fmt) { > case QFMT_VFS_OLD: > fmtname = "vfsold"; > break; > case QFMT_VFS_V0: > fmtname = "vfsv0"; > break; > case QFMT_VFS_V1: > fmtname = "vfsv1"; > break; > } > seq_printf(seq, ",jqfmt=%s", fmtname); > } > > if (sbi->s_qf_names[USRQUOTA]) > seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]); > > if (sbi->s_qf_names[GRPQUOTA]) > seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]); >#endif >} > >static const char *token2str(int token) >{ > const struct match_token *t; > > for (t = tokens; t->token != Opt_err; t++) > if (t->token == token && !strchr(t->pattern, '=')) > break; > return t->pattern; >} > >/* > * Show an option if > * - it's set to a non-default value OR > * - if the per-sb default is different from the global default > */ >static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, > int nodefs) >{ > struct ext4_sb_info *sbi = EXT4_SB(sb); > struct ext4_super_block *es = sbi->s_es; > int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; > const struct mount_opts *m; > char sep = nodefs ? '\n' : ','; > >#define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) >#define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) > > if (sbi->s_sb_block != 1) > SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); > > for (m = ext4_mount_opts; m->token != Opt_err; m++) { > int want_set = m->flags & MOPT_SET; > if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || > (m->flags & MOPT_CLEAR_ERR)) > continue; > if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) > continue; /* skip if same as the default */ > if ((want_set && > (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || > (!want_set && (sbi->s_mount_opt & m->mount_opt))) > continue; /* select Opt_noFoo vs Opt_Foo */ > SEQ_OPTS_PRINT("%s", token2str(m->token)); > } > > if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || > le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) > SEQ_OPTS_PRINT("resuid=%u", > from_kuid_munged(&init_user_ns, sbi->s_resuid)); > if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || > le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) > SEQ_OPTS_PRINT("resgid=%u", > from_kgid_munged(&init_user_ns, sbi->s_resgid)); > def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); > if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) > SEQ_OPTS_PUTS("errors=remount-ro"); > if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) > SEQ_OPTS_PUTS("errors=continue"); > if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) > SEQ_OPTS_PUTS("errors=panic"); > if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) > SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); > if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) > SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); > if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) > SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); > if (sb->s_flags & MS_I_VERSION) > SEQ_OPTS_PUTS("i_version"); > if (nodefs || sbi->s_stripe) > SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); > if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { > if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) > SEQ_OPTS_PUTS("data=journal"); > else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) > SEQ_OPTS_PUTS("data=ordered"); > else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) > SEQ_OPTS_PUTS("data=writeback"); > } > if (nodefs || > sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) > SEQ_OPTS_PRINT("inode_readahead_blks=%u", > sbi->s_inode_readahead_blks); > > if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && > (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) > SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); > if (nodefs || sbi->s_max_dir_size_kb) > SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); > > ext4_show_quota_options(seq, sb); > return 0; >} > >static int ext4_show_options(struct seq_file *seq, struct dentry *root) >{ > return _ext4_show_options(seq, root->d_sb, 0); >} > >int ext4_seq_options_show(struct seq_file *seq, void *offset) >{ > struct super_block *sb = seq->private; > int rc; > > seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw"); > rc = _ext4_show_options(seq, sb, 1); > seq_puts(seq, "\n"); > return rc; >} > >static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, > int read_only) >{ > struct ext4_sb_info *sbi = EXT4_SB(sb); > int res = 0; > > if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { > ext4_msg(sb, KERN_ERR, "revision level too high, " > "forcing read-only mode"); > res = MS_RDONLY; > } > if (read_only) > goto done; > if (!(sbi->s_mount_state & EXT4_VALID_FS)) > ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " > "running e2fsck is recommended"); > else if (sbi->s_mount_state & EXT4_ERROR_FS) > ext4_msg(sb, KERN_WARNING, > "warning: mounting fs with errors, " > "running e2fsck is recommended"); > else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && > le16_to_cpu(es->s_mnt_count) >= > (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) > ext4_msg(sb, KERN_WARNING, > "warning: maximal mount count reached, " > "running e2fsck is recommended"); > else if (le32_to_cpu(es->s_checkinterval) && > (le32_to_cpu(es->s_lastcheck) + > le32_to_cpu(es->s_checkinterval) <= get_seconds())) > ext4_msg(sb, KERN_WARNING, > "warning: checktime reached, " > "running e2fsck is recommended"); > if (!sbi->s_journal) > es->s_state &= cpu_to_le16(~EXT4_VALID_FS); > if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) > es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); > le16_add_cpu(&es->s_mnt_count, 1); > es->s_mtime = cpu_to_le32(get_seconds()); > ext4_update_dynamic_rev(sb); > if (sbi->s_journal) > ext4_set_feature_journal_needs_recovery(sb); > > ext4_commit_super(sb, 1); >done: > if (test_opt(sb, DEBUG)) > printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " > "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", > sb->s_blocksize, > sbi->s_groups_count, > EXT4_BLOCKS_PER_GROUP(sb), > EXT4_INODES_PER_GROUP(sb), > sbi->s_mount_opt, sbi->s_mount_opt2); > > cleancache_init_fs(sb); > return res; >} > >int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) >{ > struct ext4_sb_info *sbi = EXT4_SB(sb); > struct flex_groups *new_groups; > int size; > > if (!sbi->s_log_groups_per_flex) > return 0; > > size = ext4_flex_group(sbi, ngroup - 1) + 1; > if (size <= sbi->s_flex_groups_allocated) > return 0; > > size = roundup_pow_of_two(size * sizeof(struct flex_groups)); > new_groups = ext4_kvzalloc(size, GFP_KERNEL); > if (!new_groups) { > ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", > size / (int) sizeof(struct flex_groups)); > return -ENOMEM; > } > > if (sbi->s_flex_groups) { > memcpy(new_groups, sbi->s_flex_groups, > (sbi->s_flex_groups_allocated * > sizeof(struct flex_groups))); > kvfree(sbi->s_flex_groups); > } > sbi->s_flex_groups = new_groups; > sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); > return 0; >} > >static int ext4_fill_flex_info(struct super_block *sb) >{ > struct ext4_sb_info *sbi = EXT4_SB(sb); > struct ext4_group_desc *gdp = NULL; > ext4_group_t flex_group; > int i, err; > > sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; > if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { > sbi->s_log_groups_per_flex = 0; > return 1; > } > > err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); > if (err) > goto failed; > > for (i = 0; i < sbi->s_groups_count; i++) { > gdp = ext4_get_group_desc(sb, i, NULL); > > flex_group = ext4_flex_group(sbi, i); > atomic_add(ext4_free_inodes_count(sb, gdp), > &sbi->s_flex_groups[flex_group].free_inodes); > atomic64_add(ext4_free_group_clusters(sb, gdp), > &sbi->s_flex_groups[flex_group].free_clusters); > atomic_add(ext4_used_dirs_count(sb, gdp), > &sbi->s_flex_groups[flex_group].used_dirs); > } > > return 1; >failed: > return 0; >} > >static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, > struct ext4_group_desc *gdp) >{ > int offset; > __u16 crc = 0; > __le32 le_group = cpu_to_le32(block_group); > struct ext4_sb_info *sbi = EXT4_SB(sb); > > if (ext4_has_metadata_csum(sbi->s_sb)) { > /* Use new metadata_csum algorithm */ > __le16 save_csum; > __u32 csum32; > > save_csum = gdp->bg_checksum; > gdp->bg_checksum = 0; > csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, > sizeof(le_group)); > csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, > sbi->s_desc_size); > gdp->bg_checksum = save_csum; > > crc = csum32 & 0xFFFF; > goto out; > } > > /* old crc16 code */ > if (!ext4_has_feature_gdt_csum(sb)) > return 0; > > offset = offsetof(struct ext4_group_desc, bg_checksum); > > crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); > crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); > crc = crc16(crc, (__u8 *)gdp, offset); > offset += sizeof(gdp->bg_checksum); /* skip checksum */ > /* for checksum of struct ext4_group_desc do the rest...*/ > if (ext4_has_feature_64bit(sb) && > offset < le16_to_cpu(sbi->s_es->s_desc_size)) > crc = crc16(crc, (__u8 *)gdp + offset, > le16_to_cpu(sbi->s_es->s_desc_size) - > offset); > >out: > return cpu_to_le16(crc); >} > >int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, > struct ext4_group_desc *gdp) >{ > if (ext4_has_group_desc_csum(sb) && > (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) > return 0; > > return 1; >} > >void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, > struct ext4_group_desc *gdp) >{ > if (!ext4_has_group_desc_csum(sb)) > return; > gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); >} > >/* Called at mount-time, super-block is locked */ >static int ext4_check_descriptors(struct super_block *sb, > ext4_group_t *first_not_zeroed) >{ > struct ext4_sb_info *sbi = EXT4_SB(sb); > ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); > ext4_fsblk_t last_block; > ext4_fsblk_t block_bitmap; > ext4_fsblk_t inode_bitmap; > ext4_fsblk_t inode_table; > int flexbg_flag = 0; > ext4_group_t i, grp = sbi->s_groups_count; > > if (ext4_has_feature_flex_bg(sb)) > flexbg_flag = 1; > > ext4_debug("Checking group descriptors"); > > for (i = 0; i < sbi->s_groups_count; i++) { > struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); > > if (i == sbi->s_groups_count - 1 || flexbg_flag) > last_block = ext4_blocks_count(sbi->s_es) - 1; > else > last_block = first_block + > (EXT4_BLOCKS_PER_GROUP(sb) - 1); > > if ((grp == sbi->s_groups_count) && > !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) > grp = i; > > block_bitmap = ext4_block_bitmap(sb, gdp); > if (block_bitmap < first_block || block_bitmap > last_block) { > ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " > "Block bitmap for group %u not in group " > "(block %llu)!", i, block_bitmap); > return 0; > } > inode_bitmap = ext4_inode_bitmap(sb, gdp); > if (inode_bitmap < first_block || inode_bitmap > last_block) { > ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " > "Inode bitmap for group %u not in group " > "(block %llu)!", i, inode_bitmap); > return 0; > } > inode_table = ext4_inode_table(sb, gdp); > if (inode_table < first_block || > inode_table + sbi->s_itb_per_group - 1 > last_block) { > ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " > "Inode table for group %u not in group " > "(block %llu)!", i, inode_table); > return 0; > } > ext4_lock_group(sb, i); > if (!ext4_group_desc_csum_verify(sb, i, gdp)) { > ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " > "Checksum for group %u failed (%u!=%u)", > i, le16_to_cpu(ext4_group_desc_csum(sb, i, > gdp)), le16_to_cpu(gdp->bg_checksum)); > if (!(sb->s_flags & MS_RDONLY)) { > ext4_unlock_group(sb, i); > return 0; > } > } > ext4_unlock_group(sb, i); > if (!flexbg_flag) > first_block += EXT4_BLOCKS_PER_GROUP(sb); > } > if (NULL != first_not_zeroed) > *first_not_zeroed = grp; > return 1; >} > >/* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at > * the superblock) which were deleted from all directories, but held open by > * a process at the time of a crash. We walk the list and try to delete these > * inodes at recovery time (only with a read-write filesystem). > * > * In order to keep the orphan inode chain consistent during traversal (in > * case of crash during recovery), we link each inode into the superblock > * orphan list_head and handle it the same way as an inode deletion during > * normal operation (which journals the operations for us). > * > * We only do an iget() and an iput() on each inode, which is very safe if we > * accidentally point at an in-use or already deleted inode. The worst that > * can happen in this case is that we get a "bit already cleared" message from > * ext4_free_inode(). The only reason we would point at a wrong inode is if > * e2fsck was run on this filesystem, and it must have already done the orphan > * inode cleanup for us, so we can safely abort without any further action. > */ >static void ext4_orphan_cleanup(struct super_block *sb, > struct ext4_super_block *es) >{ > unsigned int s_flags = sb->s_flags; > int nr_orphans = 0, nr_truncates = 0; >#ifdef CONFIG_QUOTA > int i; >#endif > if (!es->s_last_orphan) { > jbd_debug(4, "no orphan inodes to clean up\n"); > return; > } > > if (bdev_read_only(sb->s_bdev)) { > ext4_msg(sb, KERN_ERR, "write access " > "unavailable, skipping orphan cleanup"); > return; > } > > /* Check if feature set would not allow a r/w mount */ > if (!ext4_feature_set_ok(sb, 0)) { > ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " > "unknown ROCOMPAT features"); > return; > } > > if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { > /* don't clear list on RO mount w/ errors */ > if (es->s_last_orphan && !(s_flags & MS_RDONLY)) { > ext4_msg(sb, KERN_INFO, "Errors on filesystem, " > "clearing orphan list.\n"); > es->s_last_orphan = 0; > } > jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); > return; > } > > if (s_flags & MS_RDONLY) { > ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); > sb->s_flags &= ~MS_RDONLY; > } >#ifdef CONFIG_QUOTA > /* Needed for iput() to work correctly and not trash data */ > sb->s_flags |= MS_ACTIVE; > /* Turn on quotas so that they are updated correctly */ > for (i = 0; i < EXT4_MAXQUOTAS; i++) { > if (EXT4_SB(sb)->s_qf_names[i]) { > int ret = ext4_quota_on_mount(sb, i); > if (ret < 0) > ext4_msg(sb, KERN_ERR, > "Cannot turn on journaled " > "quota: error %d", ret); > } > } >#endif > > while (es->s_last_orphan) { > struct inode *inode; > > inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); > if (IS_ERR(inode)) { > es->s_last_orphan = 0; > break; > } > > list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); > dquot_initialize(inode); > if (inode->i_nlink) { > if (test_opt(sb, DEBUG)) > ext4_msg(sb, KERN_DEBUG, > "%s: truncating inode %lu to %lld bytes", > __func__, inode->i_ino, inode->i_size); > jbd_debug(2, "truncating inode %lu to %lld bytes\n", > inode->i_ino, inode->i_size); > mutex_lock(&inode->i_mutex); > truncate_inode_pages(inode->i_mapping, inode->i_size); > ext4_truncate(inode); > mutex_unlock(&inode->i_mutex); > nr_truncates++; > } else { > if (test_opt(sb, DEBUG)) > ext4_msg(sb, KERN_DEBUG, > "%s: deleting unreferenced inode %lu", > __func__, inode->i_ino); > jbd_debug(2, "deleting unreferenced inode %lu\n", > inode->i_ino); > nr_orphans++; > } > iput(inode); /* The delete magic happens here! */ > } > >#define PLURAL(x) (x), ((x) == 1) ? "" : "s" > > if (nr_orphans) > ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", > PLURAL(nr_orphans)); > if (nr_truncates) > ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", > PLURAL(nr_truncates)); >#ifdef CONFIG_QUOTA > /* Turn quotas off */ > for (i = 0; i < EXT4_MAXQUOTAS; i++) { > if (sb_dqopt(sb)->files[i]) > dquot_quota_off(sb, i); > } >#endif > sb->s_flags = s_flags; /* Restore MS_RDONLY status */ >} > >/* > * Maximal extent format file size. > * Resulting logical blkno at s_maxbytes must fit in our on-disk > * extent format containers, within a sector_t, and within i_blocks > * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, > * so that won't be a limiting factor. > * > * However there is other limiting factor. We do store extents in the form > * of starting block and length, hence the resulting length of the extent > * covering maximum file size must fit into on-disk format containers as > * well. Given that length is always by 1 unit bigger than max unit (because > * we count 0 as well) we have to lower the s_maxbytes by one fs block. > * > * Note, this does *not* consider any metadata overhead for vfs i_blocks. > */ >static loff_t ext4_max_size(int blkbits, int has_huge_files) >{ > loff_t res; > loff_t upper_limit = MAX_LFS_FILESIZE; > > /* small i_blocks in vfs inode? */ > if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { > /* > * CONFIG_LBDAF is not enabled implies the inode > * i_block represent total blocks in 512 bytes > * 32 == size of vfs inode i_blocks * 8 > */ > upper_limit = (1LL << 32) - 1; > > /* total blocks in file system block size */ > upper_limit >>= (blkbits - 9); > upper_limit <<= blkbits; > } > > /* > * 32-bit extent-start container, ee_block. We lower the maxbytes > * by one fs block, so ee_len can cover the extent of maximum file > * size > */ > res = (1LL << 32) - 1; > res <<= blkbits; > > /* Sanity check against vm- & vfs- imposed limits */ > if (res > upper_limit) > res = upper_limit; > > return res; >} > >/* > * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect > * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. > * We need to be 1 filesystem block less than the 2^48 sector limit. > */ >static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) >{ > loff_t res = EXT4_NDIR_BLOCKS; > int meta_blocks; > loff_t upper_limit; > /* This is calculated to be the largest file size for a dense, block > * mapped file such that the file's total number of 512-byte sectors, > * including data and all indirect blocks, does not exceed (2^48 - 1). > * > * __u32 i_blocks_lo and _u16 i_blocks_high represent the total > * number of 512-byte sectors of the file. > */ > > if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { > /* > * !has_huge_files or CONFIG_LBDAF not enabled implies that > * the inode i_block field represents total file blocks in > * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 > */ > upper_limit = (1LL << 32) - 1; > > /* total blocks in file system block size */ > upper_limit >>= (bits - 9); > > } else { > /* > * We use 48 bit ext4_inode i_blocks > * With EXT4_HUGE_FILE_FL set the i_blocks > * represent total number of blocks in > * file system block size > */ > upper_limit = (1LL << 48) - 1; > > } > > /* indirect blocks */ > meta_blocks = 1; > /* double indirect blocks */ > meta_blocks += 1 + (1LL << (bits-2)); > /* tripple indirect blocks */ > meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); > > upper_limit -= meta_blocks; > upper_limit <<= bits; > > res += 1LL << (bits-2); > res += 1LL << (2*(bits-2)); > res += 1LL << (3*(bits-2)); > res <<= bits; > if (res > upper_limit) > res = upper_limit; > > if (res > MAX_LFS_FILESIZE) > res = MAX_LFS_FILESIZE; > > return res; >} > >static ext4_fsblk_t descriptor_loc(struct super_block *sb, > ext4_fsblk_t logical_sb_block, int nr) >{ > struct ext4_sb_info *sbi = EXT4_SB(sb); > ext4_group_t bg, first_meta_bg; > int has_super = 0; > > first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); > > if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) > return logical_sb_block + nr + 1; > bg = sbi->s_desc_per_block * nr; > if (ext4_bg_has_super(sb, bg)) > has_super = 1; > > /* > * If we have a meta_bg fs with 1k blocks, group 0's GDT is at > * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled > * on modern mke2fs or blksize > 1k on older mke2fs) then we must > * compensate. > */ > if (sb->s_blocksize == 1024 && nr == 0 && > le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0) > has_super++; > > return (has_super + ext4_group_first_block_no(sb, bg)); >} > >/** > * ext4_get_stripe_size: Get the stripe size. > * @sbi: In memory super block info > * > * If we have specified it via mount option, then > * use the mount option value. If the value specified at mount time is > * greater than the blocks per group use the super block value. > * If the super block value is greater than blocks per group return 0. > * Allocator needs it be less than blocks per group. > * > */ >static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) >{ > unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); > unsigned long stripe_width = > le32_to_cpu(sbi->s_es->s_raid_stripe_width); > int ret; > > if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) > ret = sbi->s_stripe; > else if (stripe_width <= sbi->s_blocks_per_group) > ret = stripe_width; > else if (stride <= sbi->s_blocks_per_group) > ret = stride; > else > ret = 0; > > /* > * If the stripe width is 1, this makes no sense and > * we set it to 0 to turn off stripe handling code. > */ > if (ret <= 1) > ret = 0; > > return ret; >} > >/* > * Check whether this filesystem can be mounted based on > * the features present and the RDONLY/RDWR mount requested. > * Returns 1 if this filesystem can be mounted as requested, > * 0 if it cannot be. > */ >static int ext4_feature_set_ok(struct super_block *sb, int readonly) >{ > if (ext4_has_unknown_ext4_incompat_features(sb)) { > ext4_msg(sb, KERN_ERR, > "Couldn't mount because of " > "unsupported optional features (%x)", > (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & > ~EXT4_FEATURE_INCOMPAT_SUPP)); > return 0; > } > > if (readonly) > return 1; > > if (ext4_has_feature_readonly(sb)) { > ext4_msg(sb, KERN_INFO, "filesystem is read-only"); > sb->s_flags |= MS_RDONLY; > return 1; > } > > /* Check that feature set is OK for a read-write mount */ > if (ext4_has_unknown_ext4_ro_compat_features(sb)) { > ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " > "unsupported optional features (%x)", > (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & > ~EXT4_FEATURE_RO_COMPAT_SUPP)); > return 0; > } > /* > * Large file size enabled file system can only be mounted > * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF > */ > if (ext4_has_feature_huge_file(sb)) { > if (sizeof(blkcnt_t) < sizeof(u64)) { > ext4_msg(sb, KERN_ERR, "Filesystem with huge files " > "cannot be mounted RDWR without " > "CONFIG_LBDAF"); > return 0; > } > } > if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { > ext4_msg(sb, KERN_ERR, > "Can't support bigalloc feature without " > "extents feature\n"); > return 0; > } > >#ifndef CONFIG_QUOTA > if (ext4_has_feature_quota(sb) && !readonly) { > ext4_msg(sb, KERN_ERR, > "Filesystem with quota feature cannot be mounted RDWR " > "without CONFIG_QUOTA"); > return 0; > } >#endif /* CONFIG_QUOTA */ > return 1; >} > >/* > * This function is called once a day if we have errors logged > * on the file system > */ >static void print_daily_error_info(unsigned long arg) >{ > struct super_block *sb = (struct super_block *) arg; > struct ext4_sb_info *sbi; > struct ext4_super_block *es; > > sbi = EXT4_SB(sb); > es = sbi->s_es; > > if (es->s_error_count) > /* fsck newer than v1.41.13 is needed to clean this condition. */ > ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", > le32_to_cpu(es->s_error_count)); > if (es->s_first_error_time) { > printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d", > sb->s_id, le32_to_cpu(es->s_first_error_time), > (int) sizeof(es->s_first_error_func), > es->s_first_error_func, > le32_to_cpu(es->s_first_error_line)); > if (es->s_first_error_ino) > printk(": inode %u", > le32_to_cpu(es->s_first_error_ino)); > if (es->s_first_error_block) > printk(": block %llu", (unsigned long long) > le64_to_cpu(es->s_first_error_block)); > printk("\n"); > } > if (es->s_last_error_time) { > printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d", > sb->s_id, le32_to_cpu(es->s_last_error_time), > (int) sizeof(es->s_last_error_func), > es->s_last_error_func, > le32_to_cpu(es->s_last_error_line)); > if (es->s_last_error_ino) > printk(": inode %u", > le32_to_cpu(es->s_last_error_ino)); > if (es->s_last_error_block) > printk(": block %llu", (unsigned long long) > le64_to_cpu(es->s_last_error_block)); > printk("\n"); > } > mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ >} > >/* Find next suitable group and run ext4_init_inode_table */ >static int ext4_run_li_request(struct ext4_li_request *elr) >{ > struct ext4_group_desc *gdp = NULL; > ext4_group_t group, ngroups; > struct super_block *sb; > unsigned long timeout = 0; > int ret = 0; > > sb = elr->lr_super; > ngroups = EXT4_SB(sb)->s_groups_count; > > sb_start_write(sb); > for (group = elr->lr_next_group; group < ngroups; group++) { > gdp = ext4_get_group_desc(sb, group, NULL); > if (!gdp) { > ret = 1; > break; > } > > if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) > break; > } > > if (group >= ngroups) > ret = 1; > > if (!ret) { > timeout = jiffies; > ret = ext4_init_inode_table(sb, group, > elr->lr_timeout ? 0 : 1); > if (elr->lr_timeout == 0) { > timeout = (jiffies - timeout) * > elr->lr_sbi->s_li_wait_mult; > elr->lr_timeout = timeout; > } > elr->lr_next_sched = jiffies + elr->lr_timeout; > elr->lr_next_group = group + 1; > } > sb_end_write(sb); > > return ret; >} > >/* > * Remove lr_request from the list_request and free the > * request structure. Should be called with li_list_mtx held > */ >static void ext4_remove_li_request(struct ext4_li_request *elr) >{ > struct ext4_sb_info *sbi; > > if (!elr) > return; > > sbi = elr->lr_sbi; > > list_del(&elr->lr_request); > sbi->s_li_request = NULL; > kfree(elr); >} > >static void ext4_unregister_li_request(struct super_block *sb) >{ > mutex_lock(&ext4_li_mtx); > if (!ext4_li_info) { > mutex_unlock(&ext4_li_mtx); > return; > } > > mutex_lock(&ext4_li_info->li_list_mtx); > ext4_remove_li_request(EXT4_SB(sb)->s_li_request); > mutex_unlock(&ext4_li_info->li_list_mtx); > mutex_unlock(&ext4_li_mtx); >} > >static struct task_struct *ext4_lazyinit_task; > >/* > * This is the function where ext4lazyinit thread lives. It walks > * through the request list searching for next scheduled filesystem. > * When such a fs is found, run the lazy initialization request > * (ext4_rn_li_request) and keep track of the time spend in this > * function. Based on that time we compute next schedule time of > * the request. When walking through the list is complete, compute > * next waking time and put itself into sleep. > */ >static int ext4_lazyinit_thread(void *arg) >{ > struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; > struct list_head *pos, *n; > struct ext4_li_request *elr; > unsigned long next_wakeup, cur; > > BUG_ON(NULL == eli); > >cont_thread: > while (true) { > next_wakeup = MAX_JIFFY_OFFSET; > > mutex_lock(&eli->li_list_mtx); > if (list_empty(&eli->li_request_list)) { > mutex_unlock(&eli->li_list_mtx); > goto exit_thread; > } > > list_for_each_safe(pos, n, &eli->li_request_list) { > elr = list_entry(pos, struct ext4_li_request, > lr_request); > > if (time_after_eq(jiffies, elr->lr_next_sched)) { > if (ext4_run_li_request(elr) != 0) { > /* error, remove the lazy_init job */ > ext4_remove_li_request(elr); > continue; > } > } > > if (time_before(elr->lr_next_sched, next_wakeup)) > next_wakeup = elr->lr_next_sched; > } > mutex_unlock(&eli->li_list_mtx); > > try_to_freeze(); > > cur = jiffies; > if ((time_after_eq(cur, next_wakeup)) || > (MAX_JIFFY_OFFSET == next_wakeup)) { > cond_resched(); > continue; > } > > schedule_timeout_interruptible(next_wakeup - cur); > > if (kthread_should_stop()) { > ext4_clear_request_list(); > goto exit_thread; > } > } > >exit_thread: > /* > * It looks like the request list is empty, but we need > * to check it under the li_list_mtx lock, to prevent any > * additions into it, and of course we should lock ext4_li_mtx > * to atomically free the list and ext4_li_info, because at > * this point another ext4 filesystem could be registering > * new one. > */ > mutex_lock(&ext4_li_mtx); > mutex_lock(&eli->li_list_mtx); > if (!list_empty(&eli->li_request_list)) { > mutex_unlock(&eli->li_list_mtx); > mutex_unlock(&ext4_li_mtx); > goto cont_thread; > } > mutex_unlock(&eli->li_list_mtx); > kfree(ext4_li_info); > ext4_li_info = NULL; > mutex_unlock(&ext4_li_mtx); > > return 0; >} > >static void ext4_clear_request_list(void) >{ > struct list_head *pos, *n; > struct ext4_li_request *elr; > > mutex_lock(&ext4_li_info->li_list_mtx); > list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { > elr = list_entry(pos, struct ext4_li_request, > lr_request); > ext4_remove_li_request(elr); > } > mutex_unlock(&ext4_li_info->li_list_mtx); >} > >static int ext4_run_lazyinit_thread(void) >{ > ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, > ext4_li_info, "ext4lazyinit"); > if (IS_ERR(ext4_lazyinit_task)) { > int err = PTR_ERR(ext4_lazyinit_task); > ext4_clear_request_list(); > kfree(ext4_li_info); > ext4_li_info = NULL; > printk(KERN_CRIT "EXT4-fs: error %d creating inode table " > "initialization thread\n", > err); > return err; > } > ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; > return 0; >} > >/* > * Check whether it make sense to run itable init. thread or not. > * If there is at least one uninitialized inode table, return > * corresponding group number, else the loop goes through all > * groups and return total number of groups. > */ >static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) >{ > ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; > struct ext4_group_desc *gdp = NULL; > > for (group = 0; group < ngroups; group++) { > gdp = ext4_get_group_desc(sb, group, NULL); > if (!gdp) > continue; > > if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) > break; > } > > return group; >} > >static int ext4_li_info_new(void) >{ > struct ext4_lazy_init *eli = NULL; > > eli = kzalloc(sizeof(*eli), GFP_KERNEL); > if (!eli) > return -ENOMEM; > > INIT_LIST_HEAD(&eli->li_request_list); > mutex_init(&eli->li_list_mtx); > > eli->li_state |= EXT4_LAZYINIT_QUIT; > > ext4_li_info = eli; > > return 0; >} > >static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, > ext4_group_t start) >{ > struct ext4_sb_info *sbi = EXT4_SB(sb); > struct ext4_li_request *elr; > > elr = kzalloc(sizeof(*elr), GFP_KERNEL); > if (!elr) > return NULL; > > elr->lr_super = sb; > elr->lr_sbi = sbi; > elr->lr_next_group = start; > > /* > * Randomize first schedule time of the request to > * spread the inode table initialization requests > * better. > */ > elr->lr_next_sched = jiffies + (prandom_u32() % > (EXT4_DEF_LI_MAX_START_DELAY * HZ)); > return elr; >} > >int ext4_register_li_request(struct super_block *sb, > ext4_group_t first_not_zeroed) >{ > struct ext4_sb_info *sbi = EXT4_SB(sb); > struct ext4_li_request *elr = NULL; > ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; > int ret = 0; > > mutex_lock(&ext4_li_mtx); > if (sbi->s_li_request != NULL) { > /* > * Reset timeout so it can be computed again, because > * s_li_wait_mult might have changed. > */ > sbi->s_li_request->lr_timeout = 0; > goto out; > } > > if (first_not_zeroed == ngroups || > (sb->s_flags & MS_RDONLY) || > !test_opt(sb, INIT_INODE_TABLE)) > goto out; > > elr = ext4_li_request_new(sb, first_not_zeroed); > if (!elr) { > ret = -ENOMEM; > goto out; > } > > if (NULL == ext4_li_info) { > ret = ext4_li_info_new(); > if (ret) > goto out; > } > > mutex_lock(&ext4_li_info->li_list_mtx); > list_add(&elr->lr_request, &ext4_li_info->li_request_list); > mutex_unlock(&ext4_li_info->li_list_mtx); > > sbi->s_li_request = elr; > /* > * set elr to NULL here since it has been inserted to > * the request_list and the removal and free of it is > * handled by ext4_clear_request_list from now on. > */ > elr = NULL; > > if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { > ret = ext4_run_lazyinit_thread(); > if (ret) > goto out; > } >out: > mutex_unlock(&ext4_li_mtx); > if (ret) > kfree(elr); > return ret; >} > >/* > * We do not need to lock anything since this is called on > * module unload. > */ >static void ext4_destroy_lazyinit_thread(void) >{ > /* > * If thread exited earlier > * there's nothing to be done. > */ > if (!ext4_li_info || !ext4_lazyinit_task) > return; > > kthread_stop(ext4_lazyinit_task); >} > >static int set_journal_csum_feature_set(struct super_block *sb) >{ > int ret = 1; > int compat, incompat; > struct ext4_sb_info *sbi = EXT4_SB(sb); > > if (ext4_has_metadata_csum(sb)) { > /* journal checksum v3 */ > compat = 0; > incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; > } else { > /* journal checksum v1 */ > compat = JBD2_FEATURE_COMPAT_CHECKSUM; > incompat = 0; > } > > jbd2_journal_clear_features(sbi->s_journal, > JBD2_FEATURE_COMPAT_CHECKSUM, 0, > JBD2_FEATURE_INCOMPAT_CSUM_V3 | > JBD2_FEATURE_INCOMPAT_CSUM_V2); > if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { > ret = jbd2_journal_set_features(sbi->s_journal, > compat, 0, > JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | > incompat); > } else if (test_opt(sb, JOURNAL_CHECKSUM)) { > ret = jbd2_journal_set_features(sbi->s_journal, > compat, 0, > incompat); > jbd2_journal_clear_features(sbi->s_journal, 0, 0, > JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); > } else { > jbd2_journal_clear_features(sbi->s_journal, 0, 0, > JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); > } > > return ret; >} > >/* > * Note: calculating the overhead so we can be compatible with > * historical BSD practice is quite difficult in the face of > * clusters/bigalloc. This is because multiple metadata blocks from > * different block group can end up in the same allocation cluster. > * Calculating the exact overhead in the face of clustered allocation > * requires either O(all block bitmaps) in memory or O(number of block > * groups**2) in time. We will still calculate the superblock for > * older file systems --- and if we come across with a bigalloc file > * system with zero in s_overhead_clusters the estimate will be close to > * correct especially for very large cluster sizes --- but for newer > * file systems, it's better to calculate this figure once at mkfs > * time, and store it in the superblock. If the superblock value is > * present (even for non-bigalloc file systems), we will use it. > */ >static int count_overhead(struct super_block *sb, ext4_group_t grp, > char *buf) >{ > struct ext4_sb_info *sbi = EXT4_SB(sb); > struct ext4_group_desc *gdp; > ext4_fsblk_t first_block, last_block, b; > ext4_group_t i, ngroups = ext4_get_groups_count(sb); > int s, j, count = 0; > > if (!ext4_has_feature_bigalloc(sb)) > return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + > sbi->s_itb_per_group + 2); > > first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + > (grp * EXT4_BLOCKS_PER_GROUP(sb)); > last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; > for (i = 0; i < ngroups; i++) { > gdp = ext4_get_group_desc(sb, i, NULL); > b = ext4_block_bitmap(sb, gdp); > if (b >= first_block && b <= last_block) { > ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); > count++; > } > b = ext4_inode_bitmap(sb, gdp); > if (b >= first_block && b <= last_block) { > ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); > count++; > } > b = ext4_inode_table(sb, gdp); > if (b >= first_block && b + sbi->s_itb_per_group <= last_block) > for (j = 0; j < sbi->s_itb_per_group; j++, b++) { > int c = EXT4_B2C(sbi, b - first_block); > ext4_set_bit(c, buf); > count++; > } > if (i != grp) > continue; > s = 0; > if (ext4_bg_has_super(sb, grp)) { > ext4_set_bit(s++, buf); > count++; > } > for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) { > ext4_set_bit(EXT4_B2C(sbi, s++), buf); > count++; > } > } > if (!count) > return 0; > return EXT4_CLUSTERS_PER_GROUP(sb) - > ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); >} > >/* > * Compute the overhead and stash it in sbi->s_overhead > */ >int ext4_calculate_overhead(struct super_block *sb) >{ > struct ext4_sb_info *sbi = EXT4_SB(sb); > struct ext4_super_block *es = sbi->s_es; > ext4_group_t i, ngroups = ext4_get_groups_count(sb); > ext4_fsblk_t overhead = 0; > char *buf = (char *) get_zeroed_page(GFP_NOFS); > > if (!buf) > return -ENOMEM; > > /* > * Compute the overhead (FS structures). This is constant > * for a given filesystem unless the number of block groups > * changes so we cache the previous value until it does. > */ > > /* > * All of the blocks before first_data_block are overhead > */ > overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); > > /* > * Add the overhead found in each block group > */ > for (i = 0; i < ngroups; i++) { > int blks; > > blks = count_overhead(sb, i, buf); > overhead += blks; > if (blks) > memset(buf, 0, PAGE_SIZE); > cond_resched(); > } > /* Add the internal journal blocks as well */ > if (sbi->s_journal && !sbi->journal_bdev) > overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); > > sbi->s_overhead = overhead; > smp_wmb(); > free_page((unsigned long) buf); > return 0; >} > >static void ext4_set_resv_clusters(struct super_block *sb) >{ > ext4_fsblk_t resv_clusters; > struct ext4_sb_info *sbi = EXT4_SB(sb); > > /* > * There's no need to reserve anything when we aren't using extents. > * The space estimates are exact, there are no unwritten extents, > * hole punching doesn't need new metadata... This is needed especially > * to keep ext2/3 backward compatibility. > */ > if (!ext4_has_feature_extents(sb)) > return; > /* > * By default we reserve 2% or 4096 clusters, whichever is smaller. > * This should cover the situations where we can not afford to run > * out of space like for example punch hole, or converting > * unwritten extents in delalloc path. In most cases such > * allocation would require 1, or 2 blocks, higher numbers are > * very rare. > */ > resv_clusters = (ext4_blocks_count(sbi->s_es) >> > sbi->s_cluster_bits); > > do_div(resv_clusters, 50); > resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); > > atomic64_set(&sbi->s_resv_clusters, resv_clusters); >} > >static int ext4_fill_super(struct super_block *sb, void *data, int silent) >{ > char *orig_data = kstrdup(data, GFP_KERNEL); > struct buffer_head *bh; > struct ext4_super_block *es = NULL; > struct ext4_sb_info *sbi; > ext4_fsblk_t block; > ext4_fsblk_t sb_block = get_sb_block(&data); > ext4_fsblk_t logical_sb_block; > unsigned long offset = 0; > unsigned long journal_devnum = 0; > unsigned long def_mount_opts; > struct inode *root; > const char *descr; > int ret = -ENOMEM; > int blocksize, clustersize; > unsigned int db_count; > unsigned int i; > int needs_recovery, has_huge_files, has_bigalloc; > __u64 blocks_count; > int err = 0; > unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; > ext4_group_t first_not_zeroed; > > sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); > if (!sbi) > goto out_free_orig; > > sbi->s_blockgroup_lock = > kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); > if (!sbi->s_blockgroup_lock) { > kfree(sbi); > goto out_free_orig; > } > sb->s_fs_info = sbi; > sbi->s_sb = sb; > sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; > sbi->s_sb_block = sb_block; > if (sb->s_bdev->bd_part) > sbi->s_sectors_written_start = > part_stat_read(sb->s_bdev->bd_part, sectors[1]); > > /* Cleanup superblock name */ > strreplace(sb->s_id, '/', '!'); > > /* -EINVAL is default */ > ret = -EINVAL; > blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); > if (!blocksize) { > ext4_msg(sb, KERN_ERR, "unable to set blocksize"); > goto out_fail; > } > > /* > * The ext4 superblock will not be buffer aligned for other than 1kB > * block sizes. We need to calculate the offset from buffer start. > */ > if (blocksize != EXT4_MIN_BLOCK_SIZE) { > logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; > offset = do_div(logical_sb_block, blocksize); > } else { > logical_sb_block = sb_block; > } > > if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { > ext4_msg(sb, KERN_ERR, "unable to read superblock"); > goto out_fail; > } > /* > * Note: s_es must be initialized as soon as possible because > * some ext4 macro-instructions depend on its value > */ > es = (struct ext4_super_block *) (bh->b_data + offset); > sbi->s_es = es; > sb->s_magic = le16_to_cpu(es->s_magic); > if (sb->s_magic != EXT4_SUPER_MAGIC) > goto cantfind_ext4; > sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); > > /* Warn if metadata_csum and gdt_csum are both set. */ > if (ext4_has_feature_metadata_csum(sb) && > ext4_has_feature_gdt_csum(sb)) > ext4_warning(sb, "metadata_csum and uninit_bg are " > "redundant flags; please run fsck."); > > /* Check for a known checksum algorithm */ > if (!ext4_verify_csum_type(sb, es)) { > ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " > "unknown checksum algorithm."); > silent = 1; > goto cantfind_ext4; > } > > /* Load the checksum driver */ > if (ext4_has_feature_metadata_csum(sb)) { > sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); > if (IS_ERR(sbi->s_chksum_driver)) { > ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); > ret = PTR_ERR(sbi->s_chksum_driver); > sbi->s_chksum_driver = NULL; > goto failed_mount; > } > } > > /* Check superblock checksum */ > if (!ext4_superblock_csum_verify(sb, es)) { > ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " > "invalid superblock checksum. Run e2fsck?"); > silent = 1; > ret = -EFSBADCRC; > goto cantfind_ext4; > } > > /* Precompute checksum seed for all metadata */ > if (ext4_has_feature_csum_seed(sb)) > sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); > else if (ext4_has_metadata_csum(sb)) > sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, > sizeof(es->s_uuid)); > > /* Set defaults before we parse the mount options */ > def_mount_opts = le32_to_cpu(es->s_default_mount_opts); > set_opt(sb, INIT_INODE_TABLE); > if (def_mount_opts & EXT4_DEFM_DEBUG) > set_opt(sb, DEBUG); > if (def_mount_opts & EXT4_DEFM_BSDGROUPS) > set_opt(sb, GRPID); > if (def_mount_opts & EXT4_DEFM_UID16) > set_opt(sb, NO_UID32); > /* xattr user namespace & acls are now defaulted on */ > set_opt(sb, XATTR_USER); >#ifdef CONFIG_EXT4_FS_POSIX_ACL > set_opt(sb, POSIX_ACL); >#endif > /* don't forget to enable journal_csum when metadata_csum is enabled. */ > if (ext4_has_metadata_csum(sb)) > set_opt(sb, JOURNAL_CHECKSUM); > > if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) > set_opt(sb, JOURNAL_DATA); > else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) > set_opt(sb, ORDERED_DATA); > else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) > set_opt(sb, WRITEBACK_DATA); > > if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) > set_opt(sb, ERRORS_PANIC); > else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) > set_opt(sb, ERRORS_CONT); > else > set_opt(sb, ERRORS_RO); > /* block_validity enabled by default; disable with noblock_validity */ > set_opt(sb, BLOCK_VALIDITY); > if (def_mount_opts & EXT4_DEFM_DISCARD) > set_opt(sb, DISCARD); > > sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); > sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); > sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; > sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; > sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; > > if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) > set_opt(sb, BARRIER); > > /* > * enable delayed allocation by default > * Use -o nodelalloc to turn it off > */ > if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && > ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) > set_opt(sb, DELALLOC); > > /* > * set default s_li_wait_mult for lazyinit, for the case there is > * no mount option specified. > */ > sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; > > if (!parse_options((char *) sbi->s_es->s_mount_opts, sb, > &journal_devnum, &journal_ioprio, 0)) { > ext4_msg(sb, KERN_WARNING, > "failed to parse options in superblock: %s", > sbi->s_es->s_mount_opts); > } > sbi->s_def_mount_opt = sbi->s_mount_opt; > if (!parse_options((char *) data, sb, &journal_devnum, > &journal_ioprio, 0)) > goto failed_mount; > > if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { > printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " > "with data=journal disables delayed " > "allocation and O_DIRECT support!\n"); > if (test_opt2(sb, EXPLICIT_DELALLOC)) { > ext4_msg(sb, KERN_ERR, "can't mount with " > "both data=journal and delalloc"); > goto failed_mount; > } > if (test_opt(sb, DIOREAD_NOLOCK)) { > ext4_msg(sb, KERN_ERR, "can't mount with " > "both data=journal and dioread_nolock"); > goto failed_mount; > } > if (test_opt(sb, DAX)) { > ext4_msg(sb, KERN_ERR, "can't mount with " > "both data=journal and dax"); > goto failed_mount; > } > if (test_opt(sb, DELALLOC)) > clear_opt(sb, DELALLOC); > } else { > sb->s_iflags |= SB_I_CGROUPWB; > } > > sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | > (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); > > if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && > (ext4_has_compat_features(sb) || > ext4_has_ro_compat_features(sb) || > ext4_has_incompat_features(sb))) > ext4_msg(sb, KERN_WARNING, > "feature flags set on rev 0 fs, " > "running e2fsck is recommended"); > > if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { > set_opt2(sb, HURD_COMPAT); > if (ext4_has_feature_64bit(sb)) { > ext4_msg(sb, KERN_ERR, > "The Hurd can't support 64-bit file systems"); > goto failed_mount; > } > } > > if (IS_EXT2_SB(sb)) { > if (ext2_feature_set_ok(sb)) > ext4_msg(sb, KERN_INFO, "mounting ext2 file system " > "using the ext4 subsystem"); > else { > ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " > "to feature incompatibilities"); > goto failed_mount; > } > } > > if (IS_EXT3_SB(sb)) { > if (ext3_feature_set_ok(sb)) > ext4_msg(sb, KERN_INFO, "mounting ext3 file system " > "using the ext4 subsystem"); > else { > ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " > "to feature incompatibilities"); > goto failed_mount; > } > } > > /* > * Check feature flags regardless of the revision level, since we > * previously didn't change the revision level when setting the flags, > * so there is a chance incompat flags are set on a rev 0 filesystem. > */ > if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) > goto failed_mount; > > blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); > if (blocksize < EXT4_MIN_BLOCK_SIZE || > blocksize > EXT4_MAX_BLOCK_SIZE) { > ext4_msg(sb, KERN_ERR, > "Unsupported filesystem blocksize %d", blocksize); > goto failed_mount; > } > > if (sbi->s_mount_opt & EXT4_MOUNT_DAX) { > if (blocksize != PAGE_SIZE) { > ext4_msg(sb, KERN_ERR, > "error: unsupported blocksize for dax"); > goto failed_mount; > } > if (!sb->s_bdev->bd_disk->fops->direct_access) { > ext4_msg(sb, KERN_ERR, > "error: device does not support dax"); > goto failed_mount; > } > } > > if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { > ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", > es->s_encryption_level); > goto failed_mount; > } > > if (sb->s_blocksize != blocksize) { > /* Validate the filesystem blocksize */ > if (!sb_set_blocksize(sb, blocksize)) { > ext4_msg(sb, KERN_ERR, "bad block size %d", > blocksize); > goto failed_mount; > } > > brelse(bh); > logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; > offset = do_div(logical_sb_block, blocksize); > bh = sb_bread_unmovable(sb, logical_sb_block); > if (!bh) { > ext4_msg(sb, KERN_ERR, > "Can't read superblock on 2nd try"); > goto failed_mount; > } > es = (struct ext4_super_block *)(bh->b_data + offset); > sbi->s_es = es; > if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { > ext4_msg(sb, KERN_ERR, > "Magic mismatch, very weird!"); > goto failed_mount; > } > } > > has_huge_files = ext4_has_feature_huge_file(sb); > sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, > has_huge_files); > sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); > > if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { > sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; > sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; > } else { > sbi->s_inode_size = le16_to_cpu(es->s_inode_size); > sbi->s_first_ino = le32_to_cpu(es->s_first_ino); > if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || > (!is_power_of_2(sbi->s_inode_size)) || > (sbi->s_inode_size > blocksize)) { > ext4_msg(sb, KERN_ERR, > "unsupported inode size: %d", > sbi->s_inode_size); > goto failed_mount; > } > if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) > sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); > } > > sbi->s_desc_size = le16_to_cpu(es->s_desc_size); > if (ext4_has_feature_64bit(sb)) { > if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || > sbi->s_desc_size > EXT4_MAX_DESC_SIZE || > !is_power_of_2(sbi->s_desc_size)) { > ext4_msg(sb, KERN_ERR, > "unsupported descriptor size %lu", > sbi->s_desc_size); > goto failed_mount; > } > } else > sbi->s_desc_size = EXT4_MIN_DESC_SIZE; > > sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); > sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); > if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) > goto cantfind_ext4; > > sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); > if (sbi->s_inodes_per_block == 0) > goto cantfind_ext4; > sbi->s_itb_per_group = sbi->s_inodes_per_group / > sbi->s_inodes_per_block; > sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); > sbi->s_sbh = bh; > sbi->s_mount_state = le16_to_cpu(es->s_state); > sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); > sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); > > for (i = 0; i < 4; i++) > sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); > sbi->s_def_hash_version = es->s_def_hash_version; > if (ext4_has_feature_dir_index(sb)) { > i = le32_to_cpu(es->s_flags); > if (i & EXT2_FLAGS_UNSIGNED_HASH) > sbi->s_hash_unsigned = 3; > else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { >#ifdef __CHAR_UNSIGNED__ > if (!(sb->s_flags & MS_RDONLY)) > es->s_flags |= > cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); > sbi->s_hash_unsigned = 3; >#else > if (!(sb->s_flags & MS_RDONLY)) > es->s_flags |= > cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); >#endif > } > } > > /* Handle clustersize */ > clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); > has_bigalloc = ext4_has_feature_bigalloc(sb); > if (has_bigalloc) { > if (clustersize < blocksize) { > ext4_msg(sb, KERN_ERR, > "cluster size (%d) smaller than " > "block size (%d)", clustersize, blocksize); > goto failed_mount; > } > sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - > le32_to_cpu(es->s_log_block_size); > sbi->s_clusters_per_group = > le32_to_cpu(es->s_clusters_per_group); > if (sbi->s_clusters_per_group > blocksize * 8) { > ext4_msg(sb, KERN_ERR, > "#clusters per group too big: %lu", > sbi->s_clusters_per_group); > goto failed_mount; > } > if (sbi->s_blocks_per_group != > (sbi->s_clusters_per_group * (clustersize / blocksize))) { > ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " > "clusters per group (%lu) inconsistent", > sbi->s_blocks_per_group, > sbi->s_clusters_per_group); > goto failed_mount; > } > } else { > if (clustersize != blocksize) { > ext4_warning(sb, "fragment/cluster size (%d) != " > "block size (%d)", clustersize, > blocksize); > clustersize = blocksize; > } > if (sbi->s_blocks_per_group > blocksize * 8) { > ext4_msg(sb, KERN_ERR, > "#blocks per group too big: %lu", > sbi->s_blocks_per_group); > goto failed_mount; > } > sbi->s_clusters_per_group = sbi->s_blocks_per_group; > sbi->s_cluster_bits = 0; > } > sbi->s_cluster_ratio = clustersize / blocksize; > > if (sbi->s_inodes_per_group > blocksize * 8) { > ext4_msg(sb, KERN_ERR, > "#inodes per group too big: %lu", > sbi->s_inodes_per_group); > goto failed_mount; > } > > /* Do we have standard group size of clustersize * 8 blocks ? */ > if (sbi->s_blocks_per_group == clustersize << 3) > set_opt2(sb, STD_GROUP_SIZE); > > /* > * Test whether we have more sectors than will fit in sector_t, > * and whether the max offset is addressable by the page cache. > */ > err = generic_check_addressable(sb->s_blocksize_bits, > ext4_blocks_count(es)); > if (err) { > ext4_msg(sb, KERN_ERR, "filesystem" > " too large to mount safely on this system"); > if (sizeof(sector_t) < 8) > ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); > goto failed_mount; > } > > if (EXT4_BLOCKS_PER_GROUP(sb) == 0) > goto cantfind_ext4; > > /* check blocks count against device size */ > blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; > if (blocks_count && ext4_blocks_count(es) > blocks_count) { > ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " > "exceeds size of device (%llu blocks)", > ext4_blocks_count(es), blocks_count); > goto failed_mount; > } > > /* > * It makes no sense for the first data block to be beyond the end > * of the filesystem. > */ > if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { > ext4_msg(sb, KERN_WARNING, "bad geometry: first data " > "block %u is beyond end of filesystem (%llu)", > le32_to_cpu(es->s_first_data_block), > ext4_blocks_count(es)); > goto failed_mount; > } > blocks_count = (ext4_blocks_count(es) - > le32_to_cpu(es->s_first_data_block) + > EXT4_BLOCKS_PER_GROUP(sb) - 1); > do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); > if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { > ext4_msg(sb, KERN_WARNING, "groups count too large: %u " > "(block count %llu, first data block %u, " > "blocks per group %lu)", sbi->s_groups_count, > ext4_blocks_count(es), > le32_to_cpu(es->s_first_data_block), > EXT4_BLOCKS_PER_GROUP(sb)); > goto failed_mount; > } > sbi->s_groups_count = blocks_count; > sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, > (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); > db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / > EXT4_DESC_PER_BLOCK(sb); > sbi->s_group_desc = ext4_kvmalloc(db_count * > sizeof(struct buffer_head *), > GFP_KERNEL); > if (sbi->s_group_desc == NULL) { > ext4_msg(sb, KERN_ERR, "not enough memory"); > ret = -ENOMEM; > goto failed_mount; > } > > bgl_lock_init(sbi->s_blockgroup_lock); > > for (i = 0; i < db_count; i++) { > block = descriptor_loc(sb, logical_sb_block, i); > sbi->s_group_desc[i] = sb_bread_unmovable(sb, block); > if (!sbi->s_group_desc[i]) { > ext4_msg(sb, KERN_ERR, > "can't read group descriptor %d", i); > db_count = i; > goto failed_mount2; > } > } > if (!ext4_check_descriptors(sb, &first_not_zeroed)) { > ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); > ret = -EFSCORRUPTED; > goto failed_mount2; > } > > sbi->s_gdb_count = db_count; > get_random_bytes(&sbi->s_next_generation, sizeof(u32)); > spin_lock_init(&sbi->s_next_gen_lock); > > setup_timer(&sbi->s_err_report, print_daily_error_info, > (unsigned long) sb); > > /* Register extent status tree shrinker */ > if (ext4_es_register_shrinker(sbi)) > goto failed_mount3; > > sbi->s_stripe = ext4_get_stripe_size(sbi); > sbi->s_extent_max_zeroout_kb = 32; > > /* > * set up enough so that it can read an inode > */ > sb->s_op = &ext4_sops; > sb->s_export_op = &ext4_export_ops; > sb->s_xattr = ext4_xattr_handlers; >#ifdef CONFIG_QUOTA > sb->dq_op = &ext4_quota_operations; > if (ext4_has_feature_quota(sb)) > sb->s_qcop = &dquot_quotactl_sysfile_ops; > else > sb->s_qcop = &ext4_qctl_operations; > sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; >#endif > memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); > > INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ > mutex_init(&sbi->s_orphan_lock); > > sb->s_root = NULL; > > needs_recovery = (es->s_last_orphan != 0 || > ext4_has_feature_journal_needs_recovery(sb)); > > if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY)) > if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) > goto failed_mount3a; > > /* > * The first inode we look at is the journal inode. Don't try > * root first: it may be modified in the journal! > */ > if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { > if (ext4_load_journal(sb, es, journal_devnum)) > goto failed_mount3a; > } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && > ext4_has_feature_journal_needs_recovery(sb)) { > ext4_msg(sb, KERN_ERR, "required journal recovery " > "suppressed and not mounted read-only"); > goto failed_mount_wq; > } else { > /* Nojournal mode, all journal mount options are illegal */ > if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { > ext4_msg(sb, KERN_ERR, "can't mount with " > "journal_checksum, fs mounted w/o journal"); > goto failed_mount_wq; > } > if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { > ext4_msg(sb, KERN_ERR, "can't mount with " > "journal_async_commit, fs mounted w/o journal"); > goto failed_mount_wq; > } > if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { > ext4_msg(sb, KERN_ERR, "can't mount with " > "commit=%lu, fs mounted w/o journal", > sbi->s_commit_interval / HZ); > goto failed_mount_wq; > } > if (EXT4_MOUNT_DATA_FLAGS & > (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { > ext4_msg(sb, KERN_ERR, "can't mount with " > "data=, fs mounted w/o journal"); > goto failed_mount_wq; > } > sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM; > clear_opt(sb, JOURNAL_CHECKSUM); > clear_opt(sb, DATA_FLAGS); > sbi->s_journal = NULL; > needs_recovery = 0; > goto no_journal; > } > > if (ext4_has_feature_64bit(sb) && > !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, > JBD2_FEATURE_INCOMPAT_64BIT)) { > ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); > goto failed_mount_wq; > } > > if (!set_journal_csum_feature_set(sb)) { > ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " > "feature set"); > goto failed_mount_wq; > } > > /* We have now updated the journal if required, so we can > * validate the data journaling mode. */ > switch (test_opt(sb, DATA_FLAGS)) { > case 0: > /* No mode set, assume a default based on the journal > * capabilities: ORDERED_DATA if the journal can > * cope, else JOURNAL_DATA > */ > if (jbd2_journal_check_available_features > (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) > set_opt(sb, ORDERED_DATA); > else > set_opt(sb, JOURNAL_DATA); > break; > > case EXT4_MOUNT_ORDERED_DATA: > case EXT4_MOUNT_WRITEBACK_DATA: > if (!jbd2_journal_check_available_features > (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { > ext4_msg(sb, KERN_ERR, "Journal does not support " > "requested data journaling mode"); > goto failed_mount_wq; > } > default: > break; > } > set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); > > sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; > >no_journal: > if (ext4_mballoc_ready) { > sbi->s_mb_cache = ext4_xattr_create_cache(sb->s_id); > if (!sbi->s_mb_cache) { > ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache"); > goto failed_mount_wq; > } > } > > if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) && > (blocksize != PAGE_CACHE_SIZE)) { > ext4_msg(sb, KERN_ERR, > "Unsupported blocksize for fs encryption"); > goto failed_mount_wq; > } > > if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) && > !ext4_has_feature_encrypt(sb)) { > ext4_set_feature_encrypt(sb); > ext4_commit_super(sb, 1); > } > > /* > * Get the # of file system overhead blocks from the > * superblock if present. > */ > if (es->s_overhead_clusters) > sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); > else { > err = ext4_calculate_overhead(sb); > if (err) > goto failed_mount_wq; > } > > /* > * The maximum number of concurrent works can be high and > * concurrency isn't really necessary. Limit it to 1. > */ > EXT4_SB(sb)->rsv_conversion_wq = > alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); > if (!EXT4_SB(sb)->rsv_conversion_wq) { > printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); > ret = -ENOMEM; > goto failed_mount4; > } > > /* > * The jbd2_journal_load will have done any necessary log recovery, > * so we can safely mount the rest of the filesystem now. > */ > > root = ext4_iget(sb, EXT4_ROOT_INO); > if (IS_ERR(root)) { > ext4_msg(sb, KERN_ERR, "get root inode failed"); > ret = PTR_ERR(root); > root = NULL; > goto failed_mount4; > } > if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { > ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); > iput(root); > goto failed_mount4; > } > sb->s_root = d_make_root(root); > if (!sb->s_root) { > ext4_msg(sb, KERN_ERR, "get root dentry failed"); > ret = -ENOMEM; > goto failed_mount4; > } > > if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY)) > sb->s_flags |= MS_RDONLY; > > /* determine the minimum size of new large inodes, if present */ > if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { > sbi->s_want_extra_isize = sizeof(struct ext4_inode) - > EXT4_GOOD_OLD_INODE_SIZE; > if (ext4_has_feature_extra_isize(sb)) { > if (sbi->s_want_extra_isize < > le16_to_cpu(es->s_want_extra_isize)) > sbi->s_want_extra_isize = > le16_to_cpu(es->s_want_extra_isize); > if (sbi->s_want_extra_isize < > le16_to_cpu(es->s_min_extra_isize)) > sbi->s_want_extra_isize = > le16_to_cpu(es->s_min_extra_isize); > } > } > /* Check if enough inode space is available */ > if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > > sbi->s_inode_size) { > sbi->s_want_extra_isize = sizeof(struct ext4_inode) - > EXT4_GOOD_OLD_INODE_SIZE; > ext4_msg(sb, KERN_INFO, "required extra inode space not" > "available"); > } > > ext4_set_resv_clusters(sb); > > err = ext4_setup_system_zone(sb); > if (err) { > ext4_msg(sb, KERN_ERR, "failed to initialize system " > "zone (%d)", err); > goto failed_mount4a; > } > > ext4_ext_init(sb); > err = ext4_mb_init(sb); > if (err) { > ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", > err); > goto failed_mount5; > } > > block = ext4_count_free_clusters(sb); > ext4_free_blocks_count_set(sbi->s_es, > EXT4_C2B(sbi, block)); > err = percpu_counter_init(&sbi->s_freeclusters_counter, block, > GFP_KERNEL); > if (!err) { > unsigned long freei = ext4_count_free_inodes(sb); > sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); > err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, > GFP_KERNEL); > } > if (!err) > err = percpu_counter_init(&sbi->s_dirs_counter, > ext4_count_dirs(sb), GFP_KERNEL); > if (!err) > err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, > GFP_KERNEL); > if (err) { > ext4_msg(sb, KERN_ERR, "insufficient memory"); > goto failed_mount6; > } > > if (ext4_has_feature_flex_bg(sb)) > if (!ext4_fill_flex_info(sb)) { > ext4_msg(sb, KERN_ERR, > "unable to initialize " > "flex_bg meta info!"); > goto failed_mount6; > } > > err = ext4_register_li_request(sb, first_not_zeroed); > if (err) > goto failed_mount6; > > err = ext4_register_sysfs(sb); > if (err) > goto failed_mount7; > >#ifdef CONFIG_QUOTA > /* Enable quota usage during mount. */ > if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) { > err = ext4_enable_quotas(sb); > if (err) > goto failed_mount8; > } >#endif /* CONFIG_QUOTA */ > > EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; > ext4_orphan_cleanup(sb, es); > EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; > if (needs_recovery) { > ext4_msg(sb, KERN_INFO, "recovery complete"); > ext4_mark_recovery_complete(sb, es); > } > if (EXT4_SB(sb)->s_journal) { > if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) > descr = " journalled data mode"; > else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) > descr = " ordered data mode"; > else > descr = " writeback data mode"; > } else > descr = "out journal"; > > if (test_opt(sb, DISCARD)) { > struct request_queue *q = bdev_get_queue(sb->s_bdev); > if (!blk_queue_discard(q)) > ext4_msg(sb, KERN_WARNING, > "mounting with \"discard\" option, but " > "the device does not support discard"); > } > > if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) > ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " > "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts, > *sbi->s_es->s_mount_opts ? "; " : "", orig_data); > > if (es->s_error_count) > mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ > > /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ > ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); > ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); > ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); > > kfree(orig_data); > return 0; > >cantfind_ext4: > if (!silent) > ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); > goto failed_mount; > >#ifdef CONFIG_QUOTA >failed_mount8: > ext4_unregister_sysfs(sb); >#endif >failed_mount7: > ext4_unregister_li_request(sb); >failed_mount6: > ext4_mb_release(sb); > if (sbi->s_flex_groups) > kvfree(sbi->s_flex_groups); > percpu_counter_destroy(&sbi->s_freeclusters_counter); > percpu_counter_destroy(&sbi->s_freeinodes_counter); > percpu_counter_destroy(&sbi->s_dirs_counter); > percpu_counter_destroy(&sbi->s_dirtyclusters_counter); >failed_mount5: > ext4_ext_release(sb); > ext4_release_system_zone(sb); >failed_mount4a: > dput(sb->s_root); > sb->s_root = NULL; >failed_mount4: > ext4_msg(sb, KERN_ERR, "mount failed"); > if (EXT4_SB(sb)->rsv_conversion_wq) > destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); >failed_mount_wq: > if (sbi->s_journal) { > jbd2_journal_destroy(sbi->s_journal); > sbi->s_journal = NULL; > } >failed_mount3a: > ext4_es_unregister_shrinker(sbi); >failed_mount3: > del_timer_sync(&sbi->s_err_report); > if (sbi->s_mmp_tsk) > kthread_stop(sbi->s_mmp_tsk); >failed_mount2: > for (i = 0; i < db_count; i++) > brelse(sbi->s_group_desc[i]); > kvfree(sbi->s_group_desc); >failed_mount: > if (sbi->s_chksum_driver) > crypto_free_shash(sbi->s_chksum_driver); >#ifdef CONFIG_QUOTA > for (i = 0; i < EXT4_MAXQUOTAS; i++) > kfree(sbi->s_qf_names[i]); >#endif > ext4_blkdev_remove(sbi); > brelse(bh); >out_fail: > sb->s_fs_info = NULL; > kfree(sbi->s_blockgroup_lock); > kfree(sbi); >out_free_orig: > kfree(orig_data); > return err ? err : ret; >} > >/* > * Setup any per-fs journal parameters now. We'll do this both on > * initial mount, once the journal has been initialised but before we've > * done any recovery; and again on any subsequent remount. > */ >static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) >{ > struct ext4_sb_info *sbi = EXT4_SB(sb); > > journal->j_commit_interval = sbi->s_commit_interval; > journal->j_min_batch_time = sbi->s_min_batch_time; > journal->j_max_batch_time = sbi->s_max_batch_time; > > write_lock(&journal->j_state_lock); > if (test_opt(sb, BARRIER)) > journal->j_flags |= JBD2_BARRIER; > else > journal->j_flags &= ~JBD2_BARRIER; > if (test_opt(sb, DATA_ERR_ABORT)) > journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; > else > journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; > write_unlock(&journal->j_state_lock); >} > >static journal_t *ext4_get_journal(struct super_block *sb, > unsigned int journal_inum) >{ > struct inode *journal_inode; > journal_t *journal; > > BUG_ON(!ext4_has_feature_journal(sb)); > > /* First, test for the existence of a valid inode on disk. Bad > * things happen if we iget() an unused inode, as the subsequent > * iput() will try to delete it. */ > > journal_inode = ext4_iget(sb, journal_inum); > if (IS_ERR(journal_inode)) { > ext4_msg(sb, KERN_ERR, "no journal found"); > return NULL; > } > if (!journal_inode->i_nlink) { > make_bad_inode(journal_inode); > iput(journal_inode); > ext4_msg(sb, KERN_ERR, "journal inode is deleted"); > return NULL; > } > > jbd_debug(2, "Journal inode found at %p: %lld bytes\n", > journal_inode, journal_inode->i_size); > if (!S_ISREG(journal_inode->i_mode)) { > ext4_msg(sb, KERN_ERR, "invalid journal inode"); > iput(journal_inode); > return NULL; > } > > journal = jbd2_journal_init_inode(journal_inode); > if (!journal) { > ext4_msg(sb, KERN_ERR, "Could not load journal inode"); > iput(journal_inode); > return NULL; > } > journal->j_private = sb; > ext4_init_journal_params(sb, journal); > return journal; >} > >static journal_t *ext4_get_dev_journal(struct super_block *sb, > dev_t j_dev) >{ > struct buffer_head *bh; > journal_t *journal; > ext4_fsblk_t start; > ext4_fsblk_t len; > int hblock, blocksize; > ext4_fsblk_t sb_block; > unsigned long offset; > struct ext4_super_block *es; > struct block_device *bdev; > > BUG_ON(!ext4_has_feature_journal(sb)); > > bdev = ext4_blkdev_get(j_dev, sb); > if (bdev == NULL) > return NULL; > > blocksize = sb->s_blocksize; > hblock = bdev_logical_block_size(bdev); > if (blocksize < hblock) { > ext4_msg(sb, KERN_ERR, > "blocksize too small for journal device"); > goto out_bdev; > } > > sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; > offset = EXT4_MIN_BLOCK_SIZE % blocksize; > set_blocksize(bdev, blocksize); > if (!(bh = __bread(bdev, sb_block, blocksize))) { > ext4_msg(sb, KERN_ERR, "couldn't read superblock of " > "external journal"); > goto out_bdev; > } > > es = (struct ext4_super_block *) (bh->b_data + offset); > if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || > !(le32_to_cpu(es->s_feature_incompat) & > EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { > ext4_msg(sb, KERN_ERR, "external journal has " > "bad superblock"); > brelse(bh); > goto out_bdev; > } > > if ((le32_to_cpu(es->s_feature_ro_compat) & > EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && > es->s_checksum != ext4_superblock_csum(sb, es)) { > ext4_msg(sb, KERN_ERR, "external journal has " > "corrupt superblock"); > brelse(bh); > goto out_bdev; > } > > if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { > ext4_msg(sb, KERN_ERR, "journal UUID does not match"); > brelse(bh); > goto out_bdev; > } > > len = ext4_blocks_count(es); > start = sb_block + 1; > brelse(bh); /* we're done with the superblock */ > > journal = jbd2_journal_init_dev(bdev, sb->s_bdev, > start, len, blocksize); > if (!journal) { > ext4_msg(sb, KERN_ERR, "failed to create device journal"); > goto out_bdev; > } > journal->j_private = sb; > ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); > wait_on_buffer(journal->j_sb_buffer); > if (!buffer_uptodate(journal->j_sb_buffer)) { > ext4_msg(sb, KERN_ERR, "I/O error on journal device"); > goto out_journal; > } > if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { > ext4_msg(sb, KERN_ERR, "External journal has more than one " > "user (unsupported) - %d", > be32_to_cpu(journal->j_superblock->s_nr_users)); > goto out_journal; > } > EXT4_SB(sb)->journal_bdev = bdev; > ext4_init_journal_params(sb, journal); > return journal; > >out_journal: > jbd2_journal_destroy(journal); >out_bdev: > ext4_blkdev_put(bdev); > return NULL; >} > >static int ext4_load_journal(struct super_block *sb, > struct ext4_super_block *es, > unsigned long journal_devnum) >{ > journal_t *journal; > unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); > dev_t journal_dev; > int err = 0; > int really_read_only; > > BUG_ON(!ext4_has_feature_journal(sb)); > > if (journal_devnum && > journal_devnum != le32_to_cpu(es->s_journal_dev)) { > ext4_msg(sb, KERN_INFO, "external journal device major/minor " > "numbers have changed"); > journal_dev = new_decode_dev(journal_devnum); > } else > journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); > > really_read_only = bdev_read_only(sb->s_bdev); > > /* > * Are we loading a blank journal or performing recovery after a > * crash? For recovery, we need to check in advance whether we > * can get read-write access to the device. > */ > if (ext4_has_feature_journal_needs_recovery(sb)) { > if (sb->s_flags & MS_RDONLY) { > ext4_msg(sb, KERN_INFO, "INFO: recovery " > "required on readonly filesystem"); > if (really_read_only) { > ext4_msg(sb, KERN_ERR, "write access " > "unavailable, cannot proceed"); > return -EROFS; > } > ext4_msg(sb, KERN_INFO, "write access will " > "be enabled during recovery"); > } > } > > if (journal_inum && journal_dev) { > ext4_msg(sb, KERN_ERR, "filesystem has both journal " > "and inode journals!"); > return -EINVAL; > } > > if (journal_inum) { > if (!(journal = ext4_get_journal(sb, journal_inum))) > return -EINVAL; > } else { > if (!(journal = ext4_get_dev_journal(sb, journal_dev))) > return -EINVAL; > } > > if (!(journal->j_flags & JBD2_BARRIER)) > ext4_msg(sb, KERN_INFO, "barriers disabled"); > > if (!ext4_has_feature_journal_needs_recovery(sb)) > err = jbd2_journal_wipe(journal, !really_read_only); > if (!err) { > char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); > if (save) > memcpy(save, ((char *) es) + > EXT4_S_ERR_START, EXT4_S_ERR_LEN); > err = jbd2_journal_load(journal); > if (save) > memcpy(((char *) es) + EXT4_S_ERR_START, > save, EXT4_S_ERR_LEN); > kfree(save); > } > > if (err) { > ext4_msg(sb, KERN_ERR, "error loading journal"); > jbd2_journal_destroy(journal); > return err; > } > > EXT4_SB(sb)->s_journal = journal; > ext4_clear_journal_err(sb, es); > > if (!really_read_only && journal_devnum && > journal_devnum != le32_to_cpu(es->s_journal_dev)) { > es->s_journal_dev = cpu_to_le32(journal_devnum); > > /* Make sure we flush the recovery flag to disk. */ > ext4_commit_super(sb, 1); > } > > return 0; >} > >static int ext4_commit_super(struct super_block *sb, int sync) >{ > struct ext4_super_block *es = EXT4_SB(sb)->s_es; > struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; > int error = 0; > > if (!sbh || block_device_ejected(sb)) > return error; > if (buffer_write_io_error(sbh)) { > /* > * Oh, dear. A previous attempt to write the > * superblock failed. This could happen because the > * USB device was yanked out. Or it could happen to > * be a transient write error and maybe the block will > * be remapped. Nothing we can do but to retry the > * write and hope for the best. > */ > ext4_msg(sb, KERN_ERR, "previous I/O error to " > "superblock detected"); > clear_buffer_write_io_error(sbh); > set_buffer_uptodate(sbh); > } > /* > * If the file system is mounted read-only, don't update the > * superblock write time. This avoids updating the superblock > * write time when we are mounting the root file system > * read/only but we need to replay the journal; at that point, > * for people who are east of GMT and who make their clock > * tick in localtime for Windows bug-for-bug compatibility, > * the clock is set in the future, and this will cause e2fsck > * to complain and force a full file system check. > */ > if (!(sb->s_flags & MS_RDONLY)) > es->s_wtime = cpu_to_le32(get_seconds()); > if (sb->s_bdev->bd_part) > es->s_kbytes_written = > cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + > ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - > EXT4_SB(sb)->s_sectors_written_start) >> 1)); > else > es->s_kbytes_written = > cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); > if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) > ext4_free_blocks_count_set(es, > EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( > &EXT4_SB(sb)->s_freeclusters_counter))); > if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) > es->s_free_inodes_count = > cpu_to_le32(percpu_counter_sum_positive( > &EXT4_SB(sb)->s_freeinodes_counter)); > BUFFER_TRACE(sbh, "marking dirty"); > ext4_superblock_csum_set(sb); > mark_buffer_dirty(sbh); > if (sync) { > error = __sync_dirty_buffer(sbh, > test_opt(sb, BARRIER) ? WRITE_FUA : WRITE_SYNC); > if (error) > return error; > > error = buffer_write_io_error(sbh); > if (error) { > ext4_msg(sb, KERN_ERR, "I/O error while writing " > "superblock"); > clear_buffer_write_io_error(sbh); > set_buffer_uptodate(sbh); > } > } > return error; >} > >/* > * Have we just finished recovery? If so, and if we are mounting (or > * remounting) the filesystem readonly, then we will end up with a > * consistent fs on disk. Record that fact. > */ >static void ext4_mark_recovery_complete(struct super_block *sb, > struct ext4_super_block *es) >{ > journal_t *journal = EXT4_SB(sb)->s_journal; > > if (!ext4_has_feature_journal(sb)) { > BUG_ON(journal != NULL); > return; > } > jbd2_journal_lock_updates(journal); > if (jbd2_journal_flush(journal) < 0) > goto out; > > if (ext4_has_feature_journal_needs_recovery(sb) && > sb->s_flags & MS_RDONLY) { > ext4_clear_feature_journal_needs_recovery(sb); > ext4_commit_super(sb, 1); > } > >out: > jbd2_journal_unlock_updates(journal); >} > >/* > * If we are mounting (or read-write remounting) a filesystem whose journal > * has recorded an error from a previous lifetime, move that error to the > * main filesystem now. > */ >static void ext4_clear_journal_err(struct super_block *sb, > struct ext4_super_block *es) >{ > journal_t *journal; > int j_errno; > const char *errstr; > > BUG_ON(!ext4_has_feature_journal(sb)); > > journal = EXT4_SB(sb)->s_journal; > > /* > * Now check for any error status which may have been recorded in the > * journal by a prior ext4_error() or ext4_abort() > */ > > j_errno = jbd2_journal_errno(journal); > if (j_errno) { > char nbuf[16]; > > errstr = ext4_decode_error(sb, j_errno, nbuf); > ext4_warning(sb, "Filesystem error recorded " > "from previous mount: %s", errstr); > ext4_warning(sb, "Marking fs in need of filesystem check."); > > EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; > es->s_state |= cpu_to_le16(EXT4_ERROR_FS); > ext4_commit_super(sb, 1); > > jbd2_journal_clear_err(journal); > jbd2_journal_update_sb_errno(journal); > } >} > >/* > * Force the running and committing transactions to commit, > * and wait on the commit. > */ >int ext4_force_commit(struct super_block *sb) >{ > journal_t *journal; > > if (sb->s_flags & MS_RDONLY) > return 0; > > journal = EXT4_SB(sb)->s_journal; > return ext4_journal_force_commit(journal); >} > >static int ext4_sync_fs(struct super_block *sb, int wait) >{ > int ret = 0; > tid_t target; > bool needs_barrier = false; > struct ext4_sb_info *sbi = EXT4_SB(sb); > > trace_ext4_sync_fs(sb, wait); > flush_workqueue(sbi->rsv_conversion_wq); > /* > * Writeback quota in non-journalled quota case - journalled quota has > * no dirty dquots > */ > dquot_writeback_dquots(sb, -1); > /* > * Data writeback is possible w/o journal transaction, so barrier must > * being sent at the end of the function. But we can skip it if > * transaction_commit will do it for us. > */ > if (sbi->s_journal) { > target = jbd2_get_latest_transaction(sbi->s_journal); > if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && > !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) > needs_barrier = true; > > if (jbd2_journal_start_commit(sbi->s_journal, &target)) { > if (wait) > ret = jbd2_log_wait_commit(sbi->s_journal, > target); > } > } else if (wait && test_opt(sb, BARRIER)) > needs_barrier = true; > if (needs_barrier) { > int err; > err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); > if (!ret) > ret = err; > } > > return ret; >} > >/* > * LVM calls this function before a (read-only) snapshot is created. This > * gives us a chance to flush the journal completely and mark the fs clean. > * > * Note that only this function cannot bring a filesystem to be in a clean > * state independently. It relies on upper layer to stop all data & metadata > * modifications. > */ >static int ext4_freeze(struct super_block *sb) >{ > int error = 0; > journal_t *journal; > > if (sb->s_flags & MS_RDONLY) > return 0; > > journal = EXT4_SB(sb)->s_journal; > > if (journal) { > /* Now we set up the journal barrier. */ > jbd2_journal_lock_updates(journal); > > /* > * Don't clear the needs_recovery flag if we failed to > * flush the journal. > */ > error = jbd2_journal_flush(journal); > if (error < 0) > goto out; > > /* Journal blocked and flushed, clear needs_recovery flag. */ > ext4_clear_feature_journal_needs_recovery(sb); > } > > error = ext4_commit_super(sb, 1); >out: > if (journal) > /* we rely on upper layer to stop further updates */ > jbd2_journal_unlock_updates(journal); > return error; >} > >/* > * Called by LVM after the snapshot is done. We need to reset the RECOVER > * flag here, even though the filesystem is not technically dirty yet. > */ >static int ext4_unfreeze(struct super_block *sb) >{ > if (sb->s_flags & MS_RDONLY) > return 0; > > if (EXT4_SB(sb)->s_journal) { > /* Reset the needs_recovery flag before the fs is unlocked. */ > ext4_set_feature_journal_needs_recovery(sb); > } > > ext4_commit_super(sb, 1); > return 0; >} > >/* > * Structure to save mount options for ext4_remount's benefit > */ >struct ext4_mount_options { > unsigned long s_mount_opt; > unsigned long s_mount_opt2; > kuid_t s_resuid; > kgid_t s_resgid; > unsigned long s_commit_interval; > u32 s_min_batch_time, s_max_batch_time; >#ifdef CONFIG_QUOTA > int s_jquota_fmt; > char *s_qf_names[EXT4_MAXQUOTAS]; >#endif >}; > >static int ext4_remount(struct super_block *sb, int *flags, char *data) >{ > struct ext4_super_block *es; > struct ext4_sb_info *sbi = EXT4_SB(sb); > unsigned long old_sb_flags; > struct ext4_mount_options old_opts; > int enable_quota = 0; > ext4_group_t g; > unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; > int err = 0; >#ifdef CONFIG_QUOTA > int i, j; >#endif > char *orig_data = kstrdup(data, GFP_KERNEL); > > /* Store the original options */ > old_sb_flags = sb->s_flags; > old_opts.s_mount_opt = sbi->s_mount_opt; > old_opts.s_mount_opt2 = sbi->s_mount_opt2; > old_opts.s_resuid = sbi->s_resuid; > old_opts.s_resgid = sbi->s_resgid; > old_opts.s_commit_interval = sbi->s_commit_interval; > old_opts.s_min_batch_time = sbi->s_min_batch_time; > old_opts.s_max_batch_time = sbi->s_max_batch_time; >#ifdef CONFIG_QUOTA > old_opts.s_jquota_fmt = sbi->s_jquota_fmt; > for (i = 0; i < EXT4_MAXQUOTAS; i++) > if (sbi->s_qf_names[i]) { > old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i], > GFP_KERNEL); > if (!old_opts.s_qf_names[i]) { > for (j = 0; j < i; j++) > kfree(old_opts.s_qf_names[j]); > kfree(orig_data); > return -ENOMEM; > } > } else > old_opts.s_qf_names[i] = NULL; >#endif > if (sbi->s_journal && sbi->s_journal->j_task->io_context) > journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; > > if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { > err = -EINVAL; > goto restore_opts; > } > > if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ > test_opt(sb, JOURNAL_CHECKSUM)) { > ext4_msg(sb, KERN_ERR, "changing journal_checksum " > "during remount not supported; ignoring"); > sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; > } > > if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { > if (test_opt2(sb, EXPLICIT_DELALLOC)) { > ext4_msg(sb, KERN_ERR, "can't mount with " > "both data=journal and delalloc"); > err = -EINVAL; > goto restore_opts; > } > if (test_opt(sb, DIOREAD_NOLOCK)) { > ext4_msg(sb, KERN_ERR, "can't mount with " > "both data=journal and dioread_nolock"); > err = -EINVAL; > goto restore_opts; > } > if (test_opt(sb, DAX)) { > ext4_msg(sb, KERN_ERR, "can't mount with " > "both data=journal and dax"); > err = -EINVAL; > goto restore_opts; > } > } > > if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) { > ext4_msg(sb, KERN_WARNING, "warning: refusing change of " > "dax flag with busy inodes while remounting"); > sbi->s_mount_opt ^= EXT4_MOUNT_DAX; > } > > if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) > ext4_abort(sb, "Abort forced by user"); > > sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | > (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); > > es = sbi->s_es; > > if (sbi->s_journal) { > ext4_init_journal_params(sb, sbi->s_journal); > set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); > } > > if (*flags & MS_LAZYTIME) > sb->s_flags |= MS_LAZYTIME; > > if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { > if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { > err = -EROFS; > goto restore_opts; > } > > if (*flags & MS_RDONLY) { > err = sync_filesystem(sb); > if (err < 0) > goto restore_opts; > err = dquot_suspend(sb, -1); > if (err < 0) > goto restore_opts; > > /* > * First of all, the unconditional stuff we have to do > * to disable replay of the journal when we next remount > */ > sb->s_flags |= MS_RDONLY; > > /* > * OK, test if we are remounting a valid rw partition > * readonly, and if so set the rdonly flag and then > * mark the partition as valid again. > */ > if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && > (sbi->s_mount_state & EXT4_VALID_FS)) > es->s_state = cpu_to_le16(sbi->s_mount_state); > > if (sbi->s_journal) > ext4_mark_recovery_complete(sb, es); > } else { > /* Make sure we can mount this feature set readwrite */ > if (ext4_has_feature_readonly(sb) || > !ext4_feature_set_ok(sb, 0)) { > err = -EROFS; > goto restore_opts; > } > /* > * Make sure the group descriptor checksums > * are sane. If they aren't, refuse to remount r/w. > */ > for (g = 0; g < sbi->s_groups_count; g++) { > struct ext4_group_desc *gdp = > ext4_get_group_desc(sb, g, NULL); > > if (!ext4_group_desc_csum_verify(sb, g, gdp)) { > ext4_msg(sb, KERN_ERR, > "ext4_remount: Checksum for group %u failed (%u!=%u)", > g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), > le16_to_cpu(gdp->bg_checksum)); > err = -EFSBADCRC; > goto restore_opts; > } > } > > /* > * If we have an unprocessed orphan list hanging > * around from a previously readonly bdev mount, > * require a full umount/remount for now. > */ > if (es->s_last_orphan) { > ext4_msg(sb, KERN_WARNING, "Couldn't " > "remount RDWR because of unprocessed " > "orphan inode list. Please " > "umount/remount instead"); > err = -EINVAL; > goto restore_opts; > } > > /* > * Mounting a RDONLY partition read-write, so reread > * and store the current valid flag. (It may have > * been changed by e2fsck since we originally mounted > * the partition.) > */ > if (sbi->s_journal) > ext4_clear_journal_err(sb, es); > sbi->s_mount_state = le16_to_cpu(es->s_state); > if (!ext4_setup_super(sb, es, 0)) > sb->s_flags &= ~MS_RDONLY; > if (ext4_has_feature_mmp(sb)) > if (ext4_multi_mount_protect(sb, > le64_to_cpu(es->s_mmp_block))) { > err = -EROFS; > goto restore_opts; > } > enable_quota = 1; > } > } > > /* > * Reinitialize lazy itable initialization thread based on > * current settings > */ > if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) > ext4_unregister_li_request(sb); > else { > ext4_group_t first_not_zeroed; > first_not_zeroed = ext4_has_uninit_itable(sb); > ext4_register_li_request(sb, first_not_zeroed); > } > > ext4_setup_system_zone(sb); > if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY)) > ext4_commit_super(sb, 1); > >#ifdef CONFIG_QUOTA > /* Release old quota file names */ > for (i = 0; i < EXT4_MAXQUOTAS; i++) > kfree(old_opts.s_qf_names[i]); > if (enable_quota) { > if (sb_any_quota_suspended(sb)) > dquot_resume(sb, -1); > else if (ext4_has_feature_quota(sb)) { > err = ext4_enable_quotas(sb); > if (err) > goto restore_opts; > } > } >#endif > > *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME); > ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); > kfree(orig_data); > return 0; > >restore_opts: > sb->s_flags = old_sb_flags; > sbi->s_mount_opt = old_opts.s_mount_opt; > sbi->s_mount_opt2 = old_opts.s_mount_opt2; > sbi->s_resuid = old_opts.s_resuid; > sbi->s_resgid = old_opts.s_resgid; > sbi->s_commit_interval = old_opts.s_commit_interval; > sbi->s_min_batch_time = old_opts.s_min_batch_time; > sbi->s_max_batch_time = old_opts.s_max_batch_time; >#ifdef CONFIG_QUOTA > sbi->s_jquota_fmt = old_opts.s_jquota_fmt; > for (i = 0; i < EXT4_MAXQUOTAS; i++) { > kfree(sbi->s_qf_names[i]); > sbi->s_qf_names[i] = old_opts.s_qf_names[i]; > } >#endif > kfree(orig_data); > return err; >} > >static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) >{ > struct super_block *sb = dentry->d_sb; > struct ext4_sb_info *sbi = EXT4_SB(sb); > struct ext4_super_block *es = sbi->s_es; > ext4_fsblk_t overhead = 0, resv_blocks; > u64 fsid; > s64 bfree; > resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); > > if (!test_opt(sb, MINIX_DF)) > overhead = sbi->s_overhead; > > buf->f_type = EXT4_SUPER_MAGIC; > buf->f_bsize = sb->s_blocksize; > buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); > bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - > percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); > /* prevent underflow in case that few free space is available */ > buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); > buf->f_bavail = buf->f_bfree - > (ext4_r_blocks_count(es) + resv_blocks); > if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) > buf->f_bavail = 0; > buf->f_files = le32_to_cpu(es->s_inodes_count); > buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); > buf->f_namelen = EXT4_NAME_LEN; > fsid = le64_to_cpup((void *)es->s_uuid) ^ > le64_to_cpup((void *)es->s_uuid + sizeof(u64)); > buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; > buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; > > return 0; >} > >/* Helper function for writing quotas on sync - we need to start transaction > * before quota file is locked for write. Otherwise the are possible deadlocks: > * Process 1 Process 2 > * ext4_create() quota_sync() > * jbd2_journal_start() write_dquot() > * dquot_initialize() down(dqio_mutex) > * down(dqio_mutex) jbd2_journal_start() > * > */ > >#ifdef CONFIG_QUOTA > >static inline struct inode *dquot_to_inode(struct dquot *dquot) >{ > return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; >} > >static int ext4_write_dquot(struct dquot *dquot) >{ > int ret, err; > handle_t *handle; > struct inode *inode; > > inode = dquot_to_inode(dquot); > handle = ext4_journal_start(inode, EXT4_HT_QUOTA, > EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); > if (IS_ERR(handle)) > return PTR_ERR(handle); > ret = dquot_commit(dquot); > err = ext4_journal_stop(handle); > if (!ret) > ret = err; > return ret; >} > >static int ext4_acquire_dquot(struct dquot *dquot) >{ > int ret, err; > handle_t *handle; > > handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, > EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); > if (IS_ERR(handle)) > return PTR_ERR(handle); > ret = dquot_acquire(dquot); > err = ext4_journal_stop(handle); > if (!ret) > ret = err; > return ret; >} > >static int ext4_release_dquot(struct dquot *dquot) >{ > int ret, err; > handle_t *handle; > > handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, > EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); > if (IS_ERR(handle)) { > /* Release dquot anyway to avoid endless cycle in dqput() */ > dquot_release(dquot); > return PTR_ERR(handle); > } > ret = dquot_release(dquot); > err = ext4_journal_stop(handle); > if (!ret) > ret = err; > return ret; >} > >static int ext4_mark_dquot_dirty(struct dquot *dquot) >{ > struct super_block *sb = dquot->dq_sb; > struct ext4_sb_info *sbi = EXT4_SB(sb); > > /* Are we journaling quotas? */ > if (ext4_has_feature_quota(sb) || > sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { > dquot_mark_dquot_dirty(dquot); > return ext4_write_dquot(dquot); > } else { > return dquot_mark_dquot_dirty(dquot); > } >} > >static int ext4_write_info(struct super_block *sb, int type) >{ > int ret, err; > handle_t *handle; > > /* Data block + inode block */ > handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); > if (IS_ERR(handle)) > return PTR_ERR(handle); > ret = dquot_commit_info(sb, type); > err = ext4_journal_stop(handle); > if (!ret) > ret = err; > return ret; >} > >/* > * Turn on quotas during mount time - we need to find > * the quota file and such... > */ >static int ext4_quota_on_mount(struct super_block *sb, int type) >{ > return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], > EXT4_SB(sb)->s_jquota_fmt, type); >} > >/* > * Standard function to be called on quota_on > */ >static int ext4_quota_on(struct super_block *sb, int type, int format_id, > struct path *path) >{ > int err; > > if (!test_opt(sb, QUOTA)) > return -EINVAL; > > /* Quotafile not on the same filesystem? */ > if (path->dentry->d_sb != sb) > return -EXDEV; > /* Journaling quota? */ > if (EXT4_SB(sb)->s_qf_names[type]) { > /* Quotafile not in fs root? */ > if (path->dentry->d_parent != sb->s_root) > ext4_msg(sb, KERN_WARNING, > "Quota file not on filesystem root. " > "Journaled quota will not work"); > } > > /* > * When we journal data on quota file, we have to flush journal to see > * all updates to the file when we bypass pagecache... > */ > if (EXT4_SB(sb)->s_journal && > ext4_should_journal_data(d_inode(path->dentry))) { > /* > * We don't need to lock updates but journal_flush() could > * otherwise be livelocked... > */ > jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); > err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); > jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); > if (err) > return err; > } > > return dquot_quota_on(sb, type, format_id, path); >} > >static int ext4_quota_enable(struct super_block *sb, int type, int format_id, > unsigned int flags) >{ > int err; > struct inode *qf_inode; > unsigned long qf_inums[EXT4_MAXQUOTAS] = { > le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), > le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) > }; > > BUG_ON(!ext4_has_feature_quota(sb)); > > if (!qf_inums[type]) > return -EPERM; > > qf_inode = ext4_iget(sb, qf_inums[type]); > if (IS_ERR(qf_inode)) { > ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); > return PTR_ERR(qf_inode); > } > > /* Don't account quota for quota files to avoid recursion */ > qf_inode->i_flags |= S_NOQUOTA; > err = dquot_enable(qf_inode, type, format_id, flags); > iput(qf_inode); > > return err; >} > >/* Enable usage tracking for all quota types. */ >static int ext4_enable_quotas(struct super_block *sb) >{ > int type, err = 0; > unsigned long qf_inums[EXT4_MAXQUOTAS] = { > le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), > le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) > }; > > sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; > for (type = 0; type < EXT4_MAXQUOTAS; type++) { > if (qf_inums[type]) { > err = ext4_quota_enable(sb, type, QFMT_VFS_V1, > DQUOT_USAGE_ENABLED); > if (err) { > ext4_warning(sb, > "Failed to enable quota tracking " > "(type=%d, err=%d). Please run " > "e2fsck to fix.", type, err); > return err; > } > } > } > return 0; >} > >static int ext4_quota_off(struct super_block *sb, int type) >{ > struct inode *inode = sb_dqopt(sb)->files[type]; > handle_t *handle; > > /* Force all delayed allocation blocks to be allocated. > * Caller already holds s_umount sem */ > if (test_opt(sb, DELALLOC)) > sync_filesystem(sb); > > if (!inode) > goto out; > > /* Update modification times of quota files when userspace can > * start looking at them */ > handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); > if (IS_ERR(handle)) > goto out; > inode->i_mtime = inode->i_ctime = CURRENT_TIME; > ext4_mark_inode_dirty(handle, inode); > ext4_journal_stop(handle); > >out: > return dquot_quota_off(sb, type); >} > >/* Read data from quotafile - avoid pagecache and such because we cannot afford > * acquiring the locks... As quota files are never truncated and quota code > * itself serializes the operations (and no one else should touch the files) > * we don't have to be afraid of races */ >static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, > size_t len, loff_t off) >{ > struct inode *inode = sb_dqopt(sb)->files[type]; > ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); > int offset = off & (sb->s_blocksize - 1); > int tocopy; > size_t toread; > struct buffer_head *bh; > loff_t i_size = i_size_read(inode); > > if (off > i_size) > return 0; > if (off+len > i_size) > len = i_size-off; > toread = len; > while (toread > 0) { > tocopy = sb->s_blocksize - offset < toread ? > sb->s_blocksize - offset : toread; > bh = ext4_bread(NULL, inode, blk, 0); > if (IS_ERR(bh)) > return PTR_ERR(bh); > if (!bh) /* A hole? */ > memset(data, 0, tocopy); > else > memcpy(data, bh->b_data+offset, tocopy); > brelse(bh); > offset = 0; > toread -= tocopy; > data += tocopy; > blk++; > } > return len; >} > >/* Write to quotafile (we know the transaction is already started and has > * enough credits) */ >static ssize_t ext4_quota_write(struct super_block *sb, int type, > const char *data, size_t len, loff_t off) >{ > struct inode *inode = sb_dqopt(sb)->files[type]; > ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); > int err, offset = off & (sb->s_blocksize - 1); > int retries = 0; > struct buffer_head *bh; > handle_t *handle = journal_current_handle(); > > if (EXT4_SB(sb)->s_journal && !handle) { > ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" > " cancelled because transaction is not started", > (unsigned long long)off, (unsigned long long)len); > return -EIO; > } > /* > * Since we account only one data block in transaction credits, > * then it is impossible to cross a block boundary. > */ > if (sb->s_blocksize - offset < len) { > ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" > " cancelled because not block aligned", > (unsigned long long)off, (unsigned long long)len); > return -EIO; > } > > do { > bh = ext4_bread(handle, inode, blk, > EXT4_GET_BLOCKS_CREATE | > EXT4_GET_BLOCKS_METADATA_NOFAIL); > } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) && > ext4_should_retry_alloc(inode->i_sb, &retries)); > if (IS_ERR(bh)) > return PTR_ERR(bh); > if (!bh) > goto out; > BUFFER_TRACE(bh, "get write access"); > err = ext4_journal_get_write_access(handle, bh); > if (err) { > brelse(bh); > return err; > } > lock_buffer(bh); > memcpy(bh->b_data+offset, data, len); > flush_dcache_page(bh->b_page); > unlock_buffer(bh); > err = ext4_handle_dirty_metadata(handle, NULL, bh); > brelse(bh); >out: > if (inode->i_size < off + len) { > i_size_write(inode, off + len); > EXT4_I(inode)->i_disksize = inode->i_size; > ext4_mark_inode_dirty(handle, inode); > } > return len; >} > >#endif > >static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, > const char *dev_name, void *data) >{ > return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); >} > >#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) >static inline void register_as_ext2(void) >{ > int err = register_filesystem(&ext2_fs_type); > if (err) > printk(KERN_WARNING > "EXT4-fs: Unable to register as ext2 (%d)\n", err); >} > >static inline void unregister_as_ext2(void) >{ > unregister_filesystem(&ext2_fs_type); >} > >static inline int ext2_feature_set_ok(struct super_block *sb) >{ > if (ext4_has_unknown_ext2_incompat_features(sb)) > return 0; > if (sb->s_flags & MS_RDONLY) > return 1; > if (ext4_has_unknown_ext2_ro_compat_features(sb)) > return 0; > return 1; >} >#else >static inline void register_as_ext2(void) { } >static inline void unregister_as_ext2(void) { } >static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } >#endif > >static inline void register_as_ext3(void) >{ > int err = register_filesystem(&ext3_fs_type); > if (err) > printk(KERN_WARNING > "EXT4-fs: Unable to register as ext3 (%d)\n", err); >} > >static inline void unregister_as_ext3(void) >{ > unregister_filesystem(&ext3_fs_type); >} > >static inline int ext3_feature_set_ok(struct super_block *sb) >{ > if (ext4_has_unknown_ext3_incompat_features(sb)) > return 0; > if (!ext4_has_feature_journal(sb)) > return 0; > if (sb->s_flags & MS_RDONLY) > return 1; > if (ext4_has_unknown_ext3_ro_compat_features(sb)) > return 0; > return 1; >} > >static struct file_system_type ext4_fs_type = { > .owner = THIS_MODULE, > .name = "ext4", > .mount = ext4_mount, > .kill_sb = kill_block_super, > .fs_flags = FS_REQUIRES_DEV, >}; >MODULE_ALIAS_FS("ext4"); > >/* Shared across all ext4 file systems */ >wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; >struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ]; > >static int __init ext4_init_fs(void) >{ > int i, err; > > ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); > ext4_li_info = NULL; > mutex_init(&ext4_li_mtx); > > /* Build-time check for flags consistency */ > ext4_check_flag_values(); > > for (i = 0; i < EXT4_WQ_HASH_SZ; i++) { > mutex_init(&ext4__aio_mutex[i]); > init_waitqueue_head(&ext4__ioend_wq[i]); > } > > err = ext4_init_es(); > if (err) > return err; > > err = ext4_init_pageio(); > if (err) > goto out5; > > err = ext4_init_system_zone(); > if (err) > goto out4; > > err = ext4_init_sysfs(); > if (err) > goto out3; > > err = ext4_init_mballoc(); > if (err) > goto out2; > else > ext4_mballoc_ready = 1; > err = init_inodecache(); > if (err) > goto out1; > register_as_ext3(); > register_as_ext2(); > err = register_filesystem(&ext4_fs_type); > if (err) > goto out; > > return 0; >out: > unregister_as_ext2(); > unregister_as_ext3(); > destroy_inodecache(); >out1: > ext4_mballoc_ready = 0; > ext4_exit_mballoc(); >out2: > ext4_exit_sysfs(); >out3: > ext4_exit_system_zone(); >out4: > ext4_exit_pageio(); >out5: > ext4_exit_es(); > > return err; >} > >static void __exit ext4_exit_fs(void) >{ > ext4_exit_crypto(); > ext4_destroy_lazyinit_thread(); > unregister_as_ext2(); > unregister_as_ext3(); > unregister_filesystem(&ext4_fs_type); > destroy_inodecache(); > ext4_exit_mballoc(); > ext4_exit_sysfs(); > ext4_exit_system_zone(); > ext4_exit_pageio(); > ext4_exit_es(); >} > >MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); >MODULE_DESCRIPTION("Fourth Extended Filesystem"); >MODULE_LICENSE("GPL"); >module_init(ext4_init_fs) >module_exit(ext4_exit_fs)
You cannot view the attachment while viewing its details because your browser does not support IFRAMEs.
View the attachment on a separate page
.
View Attachment As Raw
Actions:
View
Attachments on
bug 578394
:
430022
|
430032
|
430034
|
430856
|
430858
|
430914
|
431300
|
431302
|
431304