An Inner Product on $C[a, b]$

David Arnold

February 2, 2004

Let $C[a, b]$ be the set of all continuous functions on the closed interval $[a, b]$. It is not difficult to show that $C[a, b]$ is a vector space over \mathbb{R}. Let f and g be vectors in $C[a, b]$ and define

$$
\begin{equation*}
\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x \tag{1}
\end{equation*}
$$

We claim that \langle,$\rangle is an innerproduct defined on C[a, b]$.
In order to prove our claim, we need to show four things:

1. $\langle f, f\rangle \geq 0$ with equality if and only if $f=0$,
2. $\langle f, g\rangle=\langle g, f\rangle$,
3. $\langle\alpha f, g\rangle=\alpha\langle f, g\rangle$, and finally
4. $\langle f+g, h\rangle=\langle f, h\rangle+\langle g, h\rangle$.

For example, I offer of proof of the first part of (1). Let $f \in C[a, b]$. Then, because $[f(x)]^{2} \geq 0$ on $[a, b]$, the graph of f lies either on or above the x-axis on the interval $[a, b]$. Hence, the area under the graph of f on $[a, b]$ is nonnegative. That is,

$$
\langle f, f\rangle=\int_{a}^{b} f(x) f(x) d x=\int_{a}^{b}[f(x)]^{2} d x \geq 0
$$

As another example, I will prove (2). Let $f, g \in C[a, b]$. Then, because $f(x)$ and $g(x)$ are real numbers for all $x \in[a, b]$, they commute; i.e., $f(x) g(x)=g(x) f(x)$ for all $x \in[a, b]$. Thus, we can write

$$
\begin{aligned}
\langle f, g\rangle & =\int_{a}^{b} f(x) g(x) d x \\
& =\int_{a}^{b} g(x) f(x) d x \\
& =\langle g, f\rangle
\end{aligned}
$$

The other properties are proved similarly. The only tricky thing about this extra credit assignment is the second part of part (1). That will require an appeal to continuity.

