Gentoo Websites Logo
Go to: Gentoo Home Documentation Forums Lists Bugs Planet Store Wiki Get Gentoo!
View | Details | Raw Unified | Return to bug 376325
Collapse All | Expand All

(-)drivers.old//staging/zcache/Makefile (-1 / +1 lines)
Lines 1-3 Link Here
1
zcache-y	:=	tmem.o
1
zcache-y	:=	zcache_drv.o tmem.o
2
2
3
obj-$(CONFIG_ZCACHE)	+=	zcache.o
3
obj-$(CONFIG_ZCACHE)	+=	zcache.o
(-)drivers.old//staging/zcache/zcache.c (-1661 lines)
Lines 1-1661 Link Here
1
/*
2
 * zcache.c
3
 *
4
 * Copyright (c) 2010,2011, Dan Magenheimer, Oracle Corp.
5
 * Copyright (c) 2010,2011, Nitin Gupta
6
 *
7
 * Zcache provides an in-kernel "host implementation" for transcendent memory
8
 * and, thus indirectly, for cleancache and frontswap.  Zcache includes two
9
 * page-accessible memory [1] interfaces, both utilizing lzo1x compression:
10
 * 1) "compression buddies" ("zbud") is used for ephemeral pages
11
 * 2) xvmalloc is used for persistent pages.
12
 * Xvmalloc (based on the TLSF allocator) has very low fragmentation
13
 * so maximizes space efficiency, while zbud allows pairs (and potentially,
14
 * in the future, more than a pair of) compressed pages to be closely linked
15
 * so that reclaiming can be done via the kernel's physical-page-oriented
16
 * "shrinker" interface.
17
 *
18
 * [1] For a definition of page-accessible memory (aka PAM), see:
19
 *   http://marc.info/?l=linux-mm&m=127811271605009
20
 */
21
22
#include <linux/cpu.h>
23
#include <linux/highmem.h>
24
#include <linux/list.h>
25
#include <linux/lzo.h>
26
#include <linux/slab.h>
27
#include <linux/spinlock.h>
28
#include <linux/types.h>
29
#include <linux/atomic.h>
30
#include "tmem.h"
31
32
#include "../zram/xvmalloc.h" /* if built in drivers/staging */
33
34
#if (!defined(CONFIG_CLEANCACHE) && !defined(CONFIG_FRONTSWAP))
35
#error "zcache is useless without CONFIG_CLEANCACHE or CONFIG_FRONTSWAP"
36
#endif
37
#ifdef CONFIG_CLEANCACHE
38
#include <linux/cleancache.h>
39
#endif
40
#ifdef CONFIG_FRONTSWAP
41
#include <linux/frontswap.h>
42
#endif
43
44
#if 0
45
/* this is more aggressive but may cause other problems? */
46
#define ZCACHE_GFP_MASK	(GFP_ATOMIC | __GFP_NORETRY | __GFP_NOWARN)
47
#else
48
#define ZCACHE_GFP_MASK \
49
	(__GFP_FS | __GFP_NORETRY | __GFP_NOWARN | __GFP_NOMEMALLOC)
50
#endif
51
52
/**********
53
 * Compression buddies ("zbud") provides for packing two (or, possibly
54
 * in the future, more) compressed ephemeral pages into a single "raw"
55
 * (physical) page and tracking them with data structures so that
56
 * the raw pages can be easily reclaimed.
57
 *
58
 * A zbud page ("zbpg") is an aligned page containing a list_head,
59
 * a lock, and two "zbud headers".  The remainder of the physical
60
 * page is divided up into aligned 64-byte "chunks" which contain
61
 * the compressed data for zero, one, or two zbuds.  Each zbpg
62
 * resides on: (1) an "unused list" if it has no zbuds; (2) a
63
 * "buddied" list if it is fully populated  with two zbuds; or
64
 * (3) one of PAGE_SIZE/64 "unbuddied" lists indexed by how many chunks
65
 * the one unbuddied zbud uses.  The data inside a zbpg cannot be
66
 * read or written unless the zbpg's lock is held.
67
 */
68
69
#define ZBH_SENTINEL  0x43214321
70
#define ZBPG_SENTINEL  0xdeadbeef
71
72
#define ZBUD_MAX_BUDS 2
73
74
struct zbud_hdr {
75
	uint32_t pool_id;
76
	struct tmem_oid oid;
77
	uint32_t index;
78
	uint16_t size; /* compressed size in bytes, zero means unused */
79
	DECL_SENTINEL
80
};
81
82
struct zbud_page {
83
	struct list_head bud_list;
84
	spinlock_t lock;
85
	struct zbud_hdr buddy[ZBUD_MAX_BUDS];
86
	DECL_SENTINEL
87
	/* followed by NUM_CHUNK aligned CHUNK_SIZE-byte chunks */
88
};
89
90
#define CHUNK_SHIFT	6
91
#define CHUNK_SIZE	(1 << CHUNK_SHIFT)
92
#define CHUNK_MASK	(~(CHUNK_SIZE-1))
93
#define NCHUNKS		(((PAGE_SIZE - sizeof(struct zbud_page)) & \
94
				CHUNK_MASK) >> CHUNK_SHIFT)
95
#define MAX_CHUNK	(NCHUNKS-1)
96
97
static struct {
98
	struct list_head list;
99
	unsigned count;
100
} zbud_unbuddied[NCHUNKS];
101
/* list N contains pages with N chunks USED and NCHUNKS-N unused */
102
/* element 0 is never used but optimizing that isn't worth it */
103
static unsigned long zbud_cumul_chunk_counts[NCHUNKS];
104
105
struct list_head zbud_buddied_list;
106
static unsigned long zcache_zbud_buddied_count;
107
108
/* protects the buddied list and all unbuddied lists */
109
static DEFINE_SPINLOCK(zbud_budlists_spinlock);
110
111
static LIST_HEAD(zbpg_unused_list);
112
static unsigned long zcache_zbpg_unused_list_count;
113
114
/* protects the unused page list */
115
static DEFINE_SPINLOCK(zbpg_unused_list_spinlock);
116
117
static atomic_t zcache_zbud_curr_raw_pages;
118
static atomic_t zcache_zbud_curr_zpages;
119
static unsigned long zcache_zbud_curr_zbytes;
120
static unsigned long zcache_zbud_cumul_zpages;
121
static unsigned long zcache_zbud_cumul_zbytes;
122
static unsigned long zcache_compress_poor;
123
124
/* forward references */
125
static void *zcache_get_free_page(void);
126
static void zcache_free_page(void *p);
127
128
/*
129
 * zbud helper functions
130
 */
131
132
static inline unsigned zbud_max_buddy_size(void)
133
{
134
	return MAX_CHUNK << CHUNK_SHIFT;
135
}
136
137
static inline unsigned zbud_size_to_chunks(unsigned size)
138
{
139
	BUG_ON(size == 0 || size > zbud_max_buddy_size());
140
	return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
141
}
142
143
static inline int zbud_budnum(struct zbud_hdr *zh)
144
{
145
	unsigned offset = (unsigned long)zh & (PAGE_SIZE - 1);
146
	struct zbud_page *zbpg = NULL;
147
	unsigned budnum = -1U;
148
	int i;
149
150
	for (i = 0; i < ZBUD_MAX_BUDS; i++)
151
		if (offset == offsetof(typeof(*zbpg), buddy[i])) {
152
			budnum = i;
153
			break;
154
		}
155
	BUG_ON(budnum == -1U);
156
	return budnum;
157
}
158
159
static char *zbud_data(struct zbud_hdr *zh, unsigned size)
160
{
161
	struct zbud_page *zbpg;
162
	char *p;
163
	unsigned budnum;
164
165
	ASSERT_SENTINEL(zh, ZBH);
166
	budnum = zbud_budnum(zh);
167
	BUG_ON(size == 0 || size > zbud_max_buddy_size());
168
	zbpg = container_of(zh, struct zbud_page, buddy[budnum]);
169
	ASSERT_SPINLOCK(&zbpg->lock);
170
	p = (char *)zbpg;
171
	if (budnum == 0)
172
		p += ((sizeof(struct zbud_page) + CHUNK_SIZE - 1) &
173
							CHUNK_MASK);
174
	else if (budnum == 1)
175
		p += PAGE_SIZE - ((size + CHUNK_SIZE - 1) & CHUNK_MASK);
176
	return p;
177
}
178
179
/*
180
 * zbud raw page management
181
 */
182
183
static struct zbud_page *zbud_alloc_raw_page(void)
184
{
185
	struct zbud_page *zbpg = NULL;
186
	struct zbud_hdr *zh0, *zh1;
187
	bool recycled = 0;
188
189
	/* if any pages on the zbpg list, use one */
190
	spin_lock(&zbpg_unused_list_spinlock);
191
	if (!list_empty(&zbpg_unused_list)) {
192
		zbpg = list_first_entry(&zbpg_unused_list,
193
				struct zbud_page, bud_list);
194
		list_del_init(&zbpg->bud_list);
195
		zcache_zbpg_unused_list_count--;
196
		recycled = 1;
197
	}
198
	spin_unlock(&zbpg_unused_list_spinlock);
199
	if (zbpg == NULL)
200
		/* none on zbpg list, try to get a kernel page */
201
		zbpg = zcache_get_free_page();
202
	if (likely(zbpg != NULL)) {
203
		INIT_LIST_HEAD(&zbpg->bud_list);
204
		zh0 = &zbpg->buddy[0]; zh1 = &zbpg->buddy[1];
205
		spin_lock_init(&zbpg->lock);
206
		if (recycled) {
207
			ASSERT_INVERTED_SENTINEL(zbpg, ZBPG);
208
			SET_SENTINEL(zbpg, ZBPG);
209
			BUG_ON(zh0->size != 0 || tmem_oid_valid(&zh0->oid));
210
			BUG_ON(zh1->size != 0 || tmem_oid_valid(&zh1->oid));
211
		} else {
212
			atomic_inc(&zcache_zbud_curr_raw_pages);
213
			INIT_LIST_HEAD(&zbpg->bud_list);
214
			SET_SENTINEL(zbpg, ZBPG);
215
			zh0->size = 0; zh1->size = 0;
216
			tmem_oid_set_invalid(&zh0->oid);
217
			tmem_oid_set_invalid(&zh1->oid);
218
		}
219
	}
220
	return zbpg;
221
}
222
223
static void zbud_free_raw_page(struct zbud_page *zbpg)
224
{
225
	struct zbud_hdr *zh0 = &zbpg->buddy[0], *zh1 = &zbpg->buddy[1];
226
227
	ASSERT_SENTINEL(zbpg, ZBPG);
228
	BUG_ON(!list_empty(&zbpg->bud_list));
229
	ASSERT_SPINLOCK(&zbpg->lock);
230
	BUG_ON(zh0->size != 0 || tmem_oid_valid(&zh0->oid));
231
	BUG_ON(zh1->size != 0 || tmem_oid_valid(&zh1->oid));
232
	INVERT_SENTINEL(zbpg, ZBPG);
233
	spin_unlock(&zbpg->lock);
234
	spin_lock(&zbpg_unused_list_spinlock);
235
	list_add(&zbpg->bud_list, &zbpg_unused_list);
236
	zcache_zbpg_unused_list_count++;
237
	spin_unlock(&zbpg_unused_list_spinlock);
238
}
239
240
/*
241
 * core zbud handling routines
242
 */
243
244
static unsigned zbud_free(struct zbud_hdr *zh)
245
{
246
	unsigned size;
247
248
	ASSERT_SENTINEL(zh, ZBH);
249
	BUG_ON(!tmem_oid_valid(&zh->oid));
250
	size = zh->size;
251
	BUG_ON(zh->size == 0 || zh->size > zbud_max_buddy_size());
252
	zh->size = 0;
253
	tmem_oid_set_invalid(&zh->oid);
254
	INVERT_SENTINEL(zh, ZBH);
255
	zcache_zbud_curr_zbytes -= size;
256
	atomic_dec(&zcache_zbud_curr_zpages);
257
	return size;
258
}
259
260
static void zbud_free_and_delist(struct zbud_hdr *zh)
261
{
262
	unsigned chunks;
263
	struct zbud_hdr *zh_other;
264
	unsigned budnum = zbud_budnum(zh), size;
265
	struct zbud_page *zbpg =
266
		container_of(zh, struct zbud_page, buddy[budnum]);
267
268
	spin_lock(&zbpg->lock);
269
	if (list_empty(&zbpg->bud_list)) {
270
		/* ignore zombie page... see zbud_evict_pages() */
271
		spin_unlock(&zbpg->lock);
272
		return;
273
	}
274
	size = zbud_free(zh);
275
	ASSERT_SPINLOCK(&zbpg->lock);
276
	zh_other = &zbpg->buddy[(budnum == 0) ? 1 : 0];
277
	if (zh_other->size == 0) { /* was unbuddied: unlist and free */
278
		chunks = zbud_size_to_chunks(size) ;
279
		spin_lock(&zbud_budlists_spinlock);
280
		BUG_ON(list_empty(&zbud_unbuddied[chunks].list));
281
		list_del_init(&zbpg->bud_list);
282
		zbud_unbuddied[chunks].count--;
283
		spin_unlock(&zbud_budlists_spinlock);
284
		zbud_free_raw_page(zbpg);
285
	} else { /* was buddied: move remaining buddy to unbuddied list */
286
		chunks = zbud_size_to_chunks(zh_other->size) ;
287
		spin_lock(&zbud_budlists_spinlock);
288
		list_del_init(&zbpg->bud_list);
289
		zcache_zbud_buddied_count--;
290
		list_add_tail(&zbpg->bud_list, &zbud_unbuddied[chunks].list);
291
		zbud_unbuddied[chunks].count++;
292
		spin_unlock(&zbud_budlists_spinlock);
293
		spin_unlock(&zbpg->lock);
294
	}
295
}
296
297
static struct zbud_hdr *zbud_create(uint32_t pool_id, struct tmem_oid *oid,
298
					uint32_t index, struct page *page,
299
					void *cdata, unsigned size)
300
{
301
	struct zbud_hdr *zh0, *zh1, *zh = NULL;
302
	struct zbud_page *zbpg = NULL, *ztmp;
303
	unsigned nchunks;
304
	char *to;
305
	int i, found_good_buddy = 0;
306
307
	nchunks = zbud_size_to_chunks(size) ;
308
	for (i = MAX_CHUNK - nchunks + 1; i > 0; i--) {
309
		spin_lock(&zbud_budlists_spinlock);
310
		if (!list_empty(&zbud_unbuddied[i].list)) {
311
			list_for_each_entry_safe(zbpg, ztmp,
312
				    &zbud_unbuddied[i].list, bud_list) {
313
				if (spin_trylock(&zbpg->lock)) {
314
					found_good_buddy = i;
315
					goto found_unbuddied;
316
				}
317
			}
318
		}
319
		spin_unlock(&zbud_budlists_spinlock);
320
	}
321
	/* didn't find a good buddy, try allocating a new page */
322
	zbpg = zbud_alloc_raw_page();
323
	if (unlikely(zbpg == NULL))
324
		goto out;
325
	/* ok, have a page, now compress the data before taking locks */
326
	spin_lock(&zbpg->lock);
327
	spin_lock(&zbud_budlists_spinlock);
328
	list_add_tail(&zbpg->bud_list, &zbud_unbuddied[nchunks].list);
329
	zbud_unbuddied[nchunks].count++;
330
	zh = &zbpg->buddy[0];
331
	goto init_zh;
332
333
found_unbuddied:
334
	ASSERT_SPINLOCK(&zbpg->lock);
335
	zh0 = &zbpg->buddy[0]; zh1 = &zbpg->buddy[1];
336
	BUG_ON(!((zh0->size == 0) ^ (zh1->size == 0)));
337
	if (zh0->size != 0) { /* buddy0 in use, buddy1 is vacant */
338
		ASSERT_SENTINEL(zh0, ZBH);
339
		zh = zh1;
340
	} else if (zh1->size != 0) { /* buddy1 in use, buddy0 is vacant */
341
		ASSERT_SENTINEL(zh1, ZBH);
342
		zh = zh0;
343
	} else
344
		BUG();
345
	list_del_init(&zbpg->bud_list);
346
	zbud_unbuddied[found_good_buddy].count--;
347
	list_add_tail(&zbpg->bud_list, &zbud_buddied_list);
348
	zcache_zbud_buddied_count++;
349
350
init_zh:
351
	SET_SENTINEL(zh, ZBH);
352
	zh->size = size;
353
	zh->index = index;
354
	zh->oid = *oid;
355
	zh->pool_id = pool_id;
356
	/* can wait to copy the data until the list locks are dropped */
357
	spin_unlock(&zbud_budlists_spinlock);
358
359
	to = zbud_data(zh, size);
360
	memcpy(to, cdata, size);
361
	spin_unlock(&zbpg->lock);
362
	zbud_cumul_chunk_counts[nchunks]++;
363
	atomic_inc(&zcache_zbud_curr_zpages);
364
	zcache_zbud_cumul_zpages++;
365
	zcache_zbud_curr_zbytes += size;
366
	zcache_zbud_cumul_zbytes += size;
367
out:
368
	return zh;
369
}
370
371
static int zbud_decompress(struct page *page, struct zbud_hdr *zh)
372
{
373
	struct zbud_page *zbpg;
374
	unsigned budnum = zbud_budnum(zh);
375
	size_t out_len = PAGE_SIZE;
376
	char *to_va, *from_va;
377
	unsigned size;
378
	int ret = 0;
379
380
	zbpg = container_of(zh, struct zbud_page, buddy[budnum]);
381
	spin_lock(&zbpg->lock);
382
	if (list_empty(&zbpg->bud_list)) {
383
		/* ignore zombie page... see zbud_evict_pages() */
384
		ret = -EINVAL;
385
		goto out;
386
	}
387
	ASSERT_SENTINEL(zh, ZBH);
388
	BUG_ON(zh->size == 0 || zh->size > zbud_max_buddy_size());
389
	to_va = kmap_atomic(page, KM_USER0);
390
	size = zh->size;
391
	from_va = zbud_data(zh, size);
392
	ret = lzo1x_decompress_safe(from_va, size, to_va, &out_len);
393
	BUG_ON(ret != LZO_E_OK);
394
	BUG_ON(out_len != PAGE_SIZE);
395
	kunmap_atomic(to_va, KM_USER0);
396
out:
397
	spin_unlock(&zbpg->lock);
398
	return ret;
399
}
400
401
/*
402
 * The following routines handle shrinking of ephemeral pages by evicting
403
 * pages "least valuable" first.
404
 */
405
406
static unsigned long zcache_evicted_raw_pages;
407
static unsigned long zcache_evicted_buddied_pages;
408
static unsigned long zcache_evicted_unbuddied_pages;
409
410
static struct tmem_pool *zcache_get_pool_by_id(uint32_t poolid);
411
static void zcache_put_pool(struct tmem_pool *pool);
412
413
/*
414
 * Flush and free all zbuds in a zbpg, then free the pageframe
415
 */
416
static void zbud_evict_zbpg(struct zbud_page *zbpg)
417
{
418
	struct zbud_hdr *zh;
419
	int i, j;
420
	uint32_t pool_id[ZBUD_MAX_BUDS], index[ZBUD_MAX_BUDS];
421
	struct tmem_oid oid[ZBUD_MAX_BUDS];
422
	struct tmem_pool *pool;
423
424
	ASSERT_SPINLOCK(&zbpg->lock);
425
	BUG_ON(!list_empty(&zbpg->bud_list));
426
	for (i = 0, j = 0; i < ZBUD_MAX_BUDS; i++) {
427
		zh = &zbpg->buddy[i];
428
		if (zh->size) {
429
			pool_id[j] = zh->pool_id;
430
			oid[j] = zh->oid;
431
			index[j] = zh->index;
432
			j++;
433
			zbud_free(zh);
434
		}
435
	}
436
	spin_unlock(&zbpg->lock);
437
	for (i = 0; i < j; i++) {
438
		pool = zcache_get_pool_by_id(pool_id[i]);
439
		if (pool != NULL) {
440
			tmem_flush_page(pool, &oid[i], index[i]);
441
			zcache_put_pool(pool);
442
		}
443
	}
444
	ASSERT_SENTINEL(zbpg, ZBPG);
445
	spin_lock(&zbpg->lock);
446
	zbud_free_raw_page(zbpg);
447
}
448
449
/*
450
 * Free nr pages.  This code is funky because we want to hold the locks
451
 * protecting various lists for as short a time as possible, and in some
452
 * circumstances the list may change asynchronously when the list lock is
453
 * not held.  In some cases we also trylock not only to avoid waiting on a
454
 * page in use by another cpu, but also to avoid potential deadlock due to
455
 * lock inversion.
456
 */
457
static void zbud_evict_pages(int nr)
458
{
459
	struct zbud_page *zbpg;
460
	int i;
461
462
	/* first try freeing any pages on unused list */
463
retry_unused_list:
464
	spin_lock_bh(&zbpg_unused_list_spinlock);
465
	if (!list_empty(&zbpg_unused_list)) {
466
		/* can't walk list here, since it may change when unlocked */
467
		zbpg = list_first_entry(&zbpg_unused_list,
468
				struct zbud_page, bud_list);
469
		list_del_init(&zbpg->bud_list);
470
		zcache_zbpg_unused_list_count--;
471
		atomic_dec(&zcache_zbud_curr_raw_pages);
472
		spin_unlock_bh(&zbpg_unused_list_spinlock);
473
		zcache_free_page(zbpg);
474
		zcache_evicted_raw_pages++;
475
		if (--nr <= 0)
476
			goto out;
477
		goto retry_unused_list;
478
	}
479
	spin_unlock_bh(&zbpg_unused_list_spinlock);
480
481
	/* now try freeing unbuddied pages, starting with least space avail */
482
	for (i = 0; i < MAX_CHUNK; i++) {
483
retry_unbud_list_i:
484
		spin_lock_bh(&zbud_budlists_spinlock);
485
		if (list_empty(&zbud_unbuddied[i].list)) {
486
			spin_unlock_bh(&zbud_budlists_spinlock);
487
			continue;
488
		}
489
		list_for_each_entry(zbpg, &zbud_unbuddied[i].list, bud_list) {
490
			if (unlikely(!spin_trylock(&zbpg->lock)))
491
				continue;
492
			list_del_init(&zbpg->bud_list);
493
			zbud_unbuddied[i].count--;
494
			spin_unlock(&zbud_budlists_spinlock);
495
			zcache_evicted_unbuddied_pages++;
496
			/* want budlists unlocked when doing zbpg eviction */
497
			zbud_evict_zbpg(zbpg);
498
			local_bh_enable();
499
			if (--nr <= 0)
500
				goto out;
501
			goto retry_unbud_list_i;
502
		}
503
		spin_unlock_bh(&zbud_budlists_spinlock);
504
	}
505
506
	/* as a last resort, free buddied pages */
507
retry_bud_list:
508
	spin_lock_bh(&zbud_budlists_spinlock);
509
	if (list_empty(&zbud_buddied_list)) {
510
		spin_unlock_bh(&zbud_budlists_spinlock);
511
		goto out;
512
	}
513
	list_for_each_entry(zbpg, &zbud_buddied_list, bud_list) {
514
		if (unlikely(!spin_trylock(&zbpg->lock)))
515
			continue;
516
		list_del_init(&zbpg->bud_list);
517
		zcache_zbud_buddied_count--;
518
		spin_unlock(&zbud_budlists_spinlock);
519
		zcache_evicted_buddied_pages++;
520
		/* want budlists unlocked when doing zbpg eviction */
521
		zbud_evict_zbpg(zbpg);
522
		local_bh_enable();
523
		if (--nr <= 0)
524
			goto out;
525
		goto retry_bud_list;
526
	}
527
	spin_unlock_bh(&zbud_budlists_spinlock);
528
out:
529
	return;
530
}
531
532
static void zbud_init(void)
533
{
534
	int i;
535
536
	INIT_LIST_HEAD(&zbud_buddied_list);
537
	zcache_zbud_buddied_count = 0;
538
	for (i = 0; i < NCHUNKS; i++) {
539
		INIT_LIST_HEAD(&zbud_unbuddied[i].list);
540
		zbud_unbuddied[i].count = 0;
541
	}
542
}
543
544
#ifdef CONFIG_SYSFS
545
/*
546
 * These sysfs routines show a nice distribution of how many zbpg's are
547
 * currently (and have ever been placed) in each unbuddied list.  It's fun
548
 * to watch but can probably go away before final merge.
549
 */
550
static int zbud_show_unbuddied_list_counts(char *buf)
551
{
552
	int i;
553
	char *p = buf;
554
555
	for (i = 0; i < NCHUNKS - 1; i++)
556
		p += sprintf(p, "%u ", zbud_unbuddied[i].count);
557
	p += sprintf(p, "%d\n", zbud_unbuddied[i].count);
558
	return p - buf;
559
}
560
561
static int zbud_show_cumul_chunk_counts(char *buf)
562
{
563
	unsigned long i, chunks = 0, total_chunks = 0, sum_total_chunks = 0;
564
	unsigned long total_chunks_lte_21 = 0, total_chunks_lte_32 = 0;
565
	unsigned long total_chunks_lte_42 = 0;
566
	char *p = buf;
567
568
	for (i = 0; i < NCHUNKS; i++) {
569
		p += sprintf(p, "%lu ", zbud_cumul_chunk_counts[i]);
570
		chunks += zbud_cumul_chunk_counts[i];
571
		total_chunks += zbud_cumul_chunk_counts[i];
572
		sum_total_chunks += i * zbud_cumul_chunk_counts[i];
573
		if (i == 21)
574
			total_chunks_lte_21 = total_chunks;
575
		if (i == 32)
576
			total_chunks_lte_32 = total_chunks;
577
		if (i == 42)
578
			total_chunks_lte_42 = total_chunks;
579
	}
580
	p += sprintf(p, "<=21:%lu <=32:%lu <=42:%lu, mean:%lu\n",
581
		total_chunks_lte_21, total_chunks_lte_32, total_chunks_lte_42,
582
		chunks == 0 ? 0 : sum_total_chunks / chunks);
583
	return p - buf;
584
}
585
#endif
586
587
/**********
588
 * This "zv" PAM implementation combines the TLSF-based xvMalloc
589
 * with lzo1x compression to maximize the amount of data that can
590
 * be packed into a physical page.
591
 *
592
 * Zv represents a PAM page with the index and object (plus a "size" value
593
 * necessary for decompression) immediately preceding the compressed data.
594
 */
595
596
#define ZVH_SENTINEL  0x43214321
597
598
struct zv_hdr {
599
	uint32_t pool_id;
600
	struct tmem_oid oid;
601
	uint32_t index;
602
	DECL_SENTINEL
603
};
604
605
static const int zv_max_page_size = (PAGE_SIZE / 8) * 7;
606
607
static struct zv_hdr *zv_create(struct xv_pool *xvpool, uint32_t pool_id,
608
				struct tmem_oid *oid, uint32_t index,
609
				void *cdata, unsigned clen)
610
{
611
	struct page *page;
612
	struct zv_hdr *zv = NULL;
613
	uint32_t offset;
614
	int ret;
615
616
	BUG_ON(!irqs_disabled());
617
	ret = xv_malloc(xvpool, clen + sizeof(struct zv_hdr),
618
			&page, &offset, ZCACHE_GFP_MASK);
619
	if (unlikely(ret))
620
		goto out;
621
	zv = kmap_atomic(page, KM_USER0) + offset;
622
	zv->index = index;
623
	zv->oid = *oid;
624
	zv->pool_id = pool_id;
625
	SET_SENTINEL(zv, ZVH);
626
	memcpy((char *)zv + sizeof(struct zv_hdr), cdata, clen);
627
	kunmap_atomic(zv, KM_USER0);
628
out:
629
	return zv;
630
}
631
632
static void zv_free(struct xv_pool *xvpool, struct zv_hdr *zv)
633
{
634
	unsigned long flags;
635
	struct page *page;
636
	uint32_t offset;
637
	uint16_t size;
638
639
	ASSERT_SENTINEL(zv, ZVH);
640
	size = xv_get_object_size(zv) - sizeof(*zv);
641
	BUG_ON(size == 0 || size > zv_max_page_size);
642
	INVERT_SENTINEL(zv, ZVH);
643
	page = virt_to_page(zv);
644
	offset = (unsigned long)zv & ~PAGE_MASK;
645
	local_irq_save(flags);
646
	xv_free(xvpool, page, offset);
647
	local_irq_restore(flags);
648
}
649
650
static void zv_decompress(struct page *page, struct zv_hdr *zv)
651
{
652
	size_t clen = PAGE_SIZE;
653
	char *to_va;
654
	unsigned size;
655
	int ret;
656
657
	ASSERT_SENTINEL(zv, ZVH);
658
	size = xv_get_object_size(zv) - sizeof(*zv);
659
	BUG_ON(size == 0 || size > zv_max_page_size);
660
	to_va = kmap_atomic(page, KM_USER0);
661
	ret = lzo1x_decompress_safe((char *)zv + sizeof(*zv),
662
					size, to_va, &clen);
663
	kunmap_atomic(to_va, KM_USER0);
664
	BUG_ON(ret != LZO_E_OK);
665
	BUG_ON(clen != PAGE_SIZE);
666
}
667
668
/*
669
 * zcache core code starts here
670
 */
671
672
/* useful stats not collected by cleancache or frontswap */
673
static unsigned long zcache_flush_total;
674
static unsigned long zcache_flush_found;
675
static unsigned long zcache_flobj_total;
676
static unsigned long zcache_flobj_found;
677
static unsigned long zcache_failed_eph_puts;
678
static unsigned long zcache_failed_pers_puts;
679
680
#define MAX_POOLS_PER_CLIENT 16
681
682
static struct {
683
	struct tmem_pool *tmem_pools[MAX_POOLS_PER_CLIENT];
684
	struct xv_pool *xvpool;
685
} zcache_client;
686
687
/*
688
 * Tmem operations assume the poolid implies the invoking client.
689
 * Zcache only has one client (the kernel itself), so translate
690
 * the poolid into the tmem_pool allocated for it.  A KVM version
691
 * of zcache would have one client per guest and each client might
692
 * have a poolid==N.
693
 */
694
static struct tmem_pool *zcache_get_pool_by_id(uint32_t poolid)
695
{
696
	struct tmem_pool *pool = NULL;
697
698
	if (poolid >= 0) {
699
		pool = zcache_client.tmem_pools[poolid];
700
		if (pool != NULL)
701
			atomic_inc(&pool->refcount);
702
	}
703
	return pool;
704
}
705
706
static void zcache_put_pool(struct tmem_pool *pool)
707
{
708
	if (pool != NULL)
709
		atomic_dec(&pool->refcount);
710
}
711
712
/* counters for debugging */
713
static unsigned long zcache_failed_get_free_pages;
714
static unsigned long zcache_failed_alloc;
715
static unsigned long zcache_put_to_flush;
716
static unsigned long zcache_aborted_preload;
717
static unsigned long zcache_aborted_shrink;
718
719
/*
720
 * Ensure that memory allocation requests in zcache don't result
721
 * in direct reclaim requests via the shrinker, which would cause
722
 * an infinite loop.  Maybe a GFP flag would be better?
723
 */
724
static DEFINE_SPINLOCK(zcache_direct_reclaim_lock);
725
726
/*
727
 * for now, used named slabs so can easily track usage; later can
728
 * either just use kmalloc, or perhaps add a slab-like allocator
729
 * to more carefully manage total memory utilization
730
 */
731
static struct kmem_cache *zcache_objnode_cache;
732
static struct kmem_cache *zcache_obj_cache;
733
static atomic_t zcache_curr_obj_count = ATOMIC_INIT(0);
734
static unsigned long zcache_curr_obj_count_max;
735
static atomic_t zcache_curr_objnode_count = ATOMIC_INIT(0);
736
static unsigned long zcache_curr_objnode_count_max;
737
738
/*
739
 * to avoid memory allocation recursion (e.g. due to direct reclaim), we
740
 * preload all necessary data structures so the hostops callbacks never
741
 * actually do a malloc
742
 */
743
struct zcache_preload {
744
	void *page;
745
	struct tmem_obj *obj;
746
	int nr;
747
	struct tmem_objnode *objnodes[OBJNODE_TREE_MAX_PATH];
748
};
749
static DEFINE_PER_CPU(struct zcache_preload, zcache_preloads) = { 0, };
750
751
static int zcache_do_preload(struct tmem_pool *pool)
752
{
753
	struct zcache_preload *kp;
754
	struct tmem_objnode *objnode;
755
	struct tmem_obj *obj;
756
	void *page;
757
	int ret = -ENOMEM;
758
759
	if (unlikely(zcache_objnode_cache == NULL))
760
		goto out;
761
	if (unlikely(zcache_obj_cache == NULL))
762
		goto out;
763
	if (!spin_trylock(&zcache_direct_reclaim_lock)) {
764
		zcache_aborted_preload++;
765
		goto out;
766
	}
767
	preempt_disable();
768
	kp = &__get_cpu_var(zcache_preloads);
769
	while (kp->nr < ARRAY_SIZE(kp->objnodes)) {
770
		preempt_enable_no_resched();
771
		objnode = kmem_cache_alloc(zcache_objnode_cache,
772
				ZCACHE_GFP_MASK);
773
		if (unlikely(objnode == NULL)) {
774
			zcache_failed_alloc++;
775
			goto unlock_out;
776
		}
777
		preempt_disable();
778
		kp = &__get_cpu_var(zcache_preloads);
779
		if (kp->nr < ARRAY_SIZE(kp->objnodes))
780
			kp->objnodes[kp->nr++] = objnode;
781
		else
782
			kmem_cache_free(zcache_objnode_cache, objnode);
783
	}
784
	preempt_enable_no_resched();
785
	obj = kmem_cache_alloc(zcache_obj_cache, ZCACHE_GFP_MASK);
786
	if (unlikely(obj == NULL)) {
787
		zcache_failed_alloc++;
788
		goto unlock_out;
789
	}
790
	page = (void *)__get_free_page(ZCACHE_GFP_MASK);
791
	if (unlikely(page == NULL)) {
792
		zcache_failed_get_free_pages++;
793
		kmem_cache_free(zcache_obj_cache, obj);
794
		goto unlock_out;
795
	}
796
	preempt_disable();
797
	kp = &__get_cpu_var(zcache_preloads);
798
	if (kp->obj == NULL)
799
		kp->obj = obj;
800
	else
801
		kmem_cache_free(zcache_obj_cache, obj);
802
	if (kp->page == NULL)
803
		kp->page = page;
804
	else
805
		free_page((unsigned long)page);
806
	ret = 0;
807
unlock_out:
808
	spin_unlock(&zcache_direct_reclaim_lock);
809
out:
810
	return ret;
811
}
812
813
static void *zcache_get_free_page(void)
814
{
815
	struct zcache_preload *kp;
816
	void *page;
817
818
	kp = &__get_cpu_var(zcache_preloads);
819
	page = kp->page;
820
	BUG_ON(page == NULL);
821
	kp->page = NULL;
822
	return page;
823
}
824
825
static void zcache_free_page(void *p)
826
{
827
	free_page((unsigned long)p);
828
}
829
830
/*
831
 * zcache implementation for tmem host ops
832
 */
833
834
static struct tmem_objnode *zcache_objnode_alloc(struct tmem_pool *pool)
835
{
836
	struct tmem_objnode *objnode = NULL;
837
	unsigned long count;
838
	struct zcache_preload *kp;
839
840
	kp = &__get_cpu_var(zcache_preloads);
841
	if (kp->nr <= 0)
842
		goto out;
843
	objnode = kp->objnodes[kp->nr - 1];
844
	BUG_ON(objnode == NULL);
845
	kp->objnodes[kp->nr - 1] = NULL;
846
	kp->nr--;
847
	count = atomic_inc_return(&zcache_curr_objnode_count);
848
	if (count > zcache_curr_objnode_count_max)
849
		zcache_curr_objnode_count_max = count;
850
out:
851
	return objnode;
852
}
853
854
static void zcache_objnode_free(struct tmem_objnode *objnode,
855
					struct tmem_pool *pool)
856
{
857
	atomic_dec(&zcache_curr_objnode_count);
858
	BUG_ON(atomic_read(&zcache_curr_objnode_count) < 0);
859
	kmem_cache_free(zcache_objnode_cache, objnode);
860
}
861
862
static struct tmem_obj *zcache_obj_alloc(struct tmem_pool *pool)
863
{
864
	struct tmem_obj *obj = NULL;
865
	unsigned long count;
866
	struct zcache_preload *kp;
867
868
	kp = &__get_cpu_var(zcache_preloads);
869
	obj = kp->obj;
870
	BUG_ON(obj == NULL);
871
	kp->obj = NULL;
872
	count = atomic_inc_return(&zcache_curr_obj_count);
873
	if (count > zcache_curr_obj_count_max)
874
		zcache_curr_obj_count_max = count;
875
	return obj;
876
}
877
878
static void zcache_obj_free(struct tmem_obj *obj, struct tmem_pool *pool)
879
{
880
	atomic_dec(&zcache_curr_obj_count);
881
	BUG_ON(atomic_read(&zcache_curr_obj_count) < 0);
882
	kmem_cache_free(zcache_obj_cache, obj);
883
}
884
885
static struct tmem_hostops zcache_hostops = {
886
	.obj_alloc = zcache_obj_alloc,
887
	.obj_free = zcache_obj_free,
888
	.objnode_alloc = zcache_objnode_alloc,
889
	.objnode_free = zcache_objnode_free,
890
};
891
892
/*
893
 * zcache implementations for PAM page descriptor ops
894
 */
895
896
static atomic_t zcache_curr_eph_pampd_count = ATOMIC_INIT(0);
897
static unsigned long zcache_curr_eph_pampd_count_max;
898
static atomic_t zcache_curr_pers_pampd_count = ATOMIC_INIT(0);
899
static unsigned long zcache_curr_pers_pampd_count_max;
900
901
/* forward reference */
902
static int zcache_compress(struct page *from, void **out_va, size_t *out_len);
903
904
static void *zcache_pampd_create(struct tmem_pool *pool, struct tmem_oid *oid,
905
				 uint32_t index, struct page *page)
906
{
907
	void *pampd = NULL, *cdata;
908
	size_t clen;
909
	int ret;
910
	bool ephemeral = is_ephemeral(pool);
911
	unsigned long count;
912
913
	if (ephemeral) {
914
		ret = zcache_compress(page, &cdata, &clen);
915
		if (ret == 0)
916
917
			goto out;
918
		if (clen == 0 || clen > zbud_max_buddy_size()) {
919
			zcache_compress_poor++;
920
			goto out;
921
		}
922
		pampd = (void *)zbud_create(pool->pool_id, oid, index,
923
						page, cdata, clen);
924
		if (pampd != NULL) {
925
			count = atomic_inc_return(&zcache_curr_eph_pampd_count);
926
			if (count > zcache_curr_eph_pampd_count_max)
927
				zcache_curr_eph_pampd_count_max = count;
928
		}
929
	} else {
930
		/*
931
		 * FIXME: This is all the "policy" there is for now.
932
		 * 3/4 totpages should allow ~37% of RAM to be filled with
933
		 * compressed frontswap pages
934
		 */
935
		if (atomic_read(&zcache_curr_pers_pampd_count) >
936
							3 * totalram_pages / 4)
937
			goto out;
938
		ret = zcache_compress(page, &cdata, &clen);
939
		if (ret == 0)
940
			goto out;
941
		if (clen > zv_max_page_size) {
942
			zcache_compress_poor++;
943
			goto out;
944
		}
945
		pampd = (void *)zv_create(zcache_client.xvpool, pool->pool_id,
946
						oid, index, cdata, clen);
947
		if (pampd == NULL)
948
			goto out;
949
		count = atomic_inc_return(&zcache_curr_pers_pampd_count);
950
		if (count > zcache_curr_pers_pampd_count_max)
951
			zcache_curr_pers_pampd_count_max = count;
952
	}
953
out:
954
	return pampd;
955
}
956
957
/*
958
 * fill the pageframe corresponding to the struct page with the data
959
 * from the passed pampd
960
 */
961
static int zcache_pampd_get_data(struct page *page, void *pampd,
962
						struct tmem_pool *pool)
963
{
964
	int ret = 0;
965
966
	if (is_ephemeral(pool))
967
		ret = zbud_decompress(page, pampd);
968
	else
969
		zv_decompress(page, pampd);
970
	return ret;
971
}
972
973
/*
974
 * free the pampd and remove it from any zcache lists
975
 * pampd must no longer be pointed to from any tmem data structures!
976
 */
977
static void zcache_pampd_free(void *pampd, struct tmem_pool *pool)
978
{
979
	if (is_ephemeral(pool)) {
980
		zbud_free_and_delist((struct zbud_hdr *)pampd);
981
		atomic_dec(&zcache_curr_eph_pampd_count);
982
		BUG_ON(atomic_read(&zcache_curr_eph_pampd_count) < 0);
983
	} else {
984
		zv_free(zcache_client.xvpool, (struct zv_hdr *)pampd);
985
		atomic_dec(&zcache_curr_pers_pampd_count);
986
		BUG_ON(atomic_read(&zcache_curr_pers_pampd_count) < 0);
987
	}
988
}
989
990
static struct tmem_pamops zcache_pamops = {
991
	.create = zcache_pampd_create,
992
	.get_data = zcache_pampd_get_data,
993
	.free = zcache_pampd_free,
994
};
995
996
/*
997
 * zcache compression/decompression and related per-cpu stuff
998
 */
999
1000
#define LZO_WORKMEM_BYTES LZO1X_1_MEM_COMPRESS
1001
#define LZO_DSTMEM_PAGE_ORDER 1
1002
static DEFINE_PER_CPU(unsigned char *, zcache_workmem);
1003
static DEFINE_PER_CPU(unsigned char *, zcache_dstmem);
1004
1005
static int zcache_compress(struct page *from, void **out_va, size_t *out_len)
1006
{
1007
	int ret = 0;
1008
	unsigned char *dmem = __get_cpu_var(zcache_dstmem);
1009
	unsigned char *wmem = __get_cpu_var(zcache_workmem);
1010
	char *from_va;
1011
1012
	BUG_ON(!irqs_disabled());
1013
	if (unlikely(dmem == NULL || wmem == NULL))
1014
		goto out;  /* no buffer, so can't compress */
1015
	from_va = kmap_atomic(from, KM_USER0);
1016
	mb();
1017
	ret = lzo1x_1_compress(from_va, PAGE_SIZE, dmem, out_len, wmem);
1018
	BUG_ON(ret != LZO_E_OK);
1019
	*out_va = dmem;
1020
	kunmap_atomic(from_va, KM_USER0);
1021
	ret = 1;
1022
out:
1023
	return ret;
1024
}
1025
1026
1027
static int zcache_cpu_notifier(struct notifier_block *nb,
1028
				unsigned long action, void *pcpu)
1029
{
1030
	int cpu = (long)pcpu;
1031
	struct zcache_preload *kp;
1032
1033
	switch (action) {
1034
	case CPU_UP_PREPARE:
1035
		per_cpu(zcache_dstmem, cpu) = (void *)__get_free_pages(
1036
			GFP_KERNEL | __GFP_REPEAT,
1037
			LZO_DSTMEM_PAGE_ORDER),
1038
		per_cpu(zcache_workmem, cpu) =
1039
			kzalloc(LZO1X_MEM_COMPRESS,
1040
				GFP_KERNEL | __GFP_REPEAT);
1041
		break;
1042
	case CPU_DEAD:
1043
	case CPU_UP_CANCELED:
1044
		free_pages((unsigned long)per_cpu(zcache_dstmem, cpu),
1045
				LZO_DSTMEM_PAGE_ORDER);
1046
		per_cpu(zcache_dstmem, cpu) = NULL;
1047
		kfree(per_cpu(zcache_workmem, cpu));
1048
		per_cpu(zcache_workmem, cpu) = NULL;
1049
		kp = &per_cpu(zcache_preloads, cpu);
1050
		while (kp->nr) {
1051
			kmem_cache_free(zcache_objnode_cache,
1052
					kp->objnodes[kp->nr - 1]);
1053
			kp->objnodes[kp->nr - 1] = NULL;
1054
			kp->nr--;
1055
		}
1056
		kmem_cache_free(zcache_obj_cache, kp->obj);
1057
		free_page((unsigned long)kp->page);
1058
		break;
1059
	default:
1060
		break;
1061
	}
1062
	return NOTIFY_OK;
1063
}
1064
1065
static struct notifier_block zcache_cpu_notifier_block = {
1066
	.notifier_call = zcache_cpu_notifier
1067
};
1068
1069
#ifdef CONFIG_SYSFS
1070
#define ZCACHE_SYSFS_RO(_name) \
1071
	static ssize_t zcache_##_name##_show(struct kobject *kobj, \
1072
				struct kobj_attribute *attr, char *buf) \
1073
	{ \
1074
		return sprintf(buf, "%lu\n", zcache_##_name); \
1075
	} \
1076
	static struct kobj_attribute zcache_##_name##_attr = { \
1077
		.attr = { .name = __stringify(_name), .mode = 0444 }, \
1078
		.show = zcache_##_name##_show, \
1079
	}
1080
1081
#define ZCACHE_SYSFS_RO_ATOMIC(_name) \
1082
	static ssize_t zcache_##_name##_show(struct kobject *kobj, \
1083
				struct kobj_attribute *attr, char *buf) \
1084
	{ \
1085
	    return sprintf(buf, "%d\n", atomic_read(&zcache_##_name)); \
1086
	} \
1087
	static struct kobj_attribute zcache_##_name##_attr = { \
1088
		.attr = { .name = __stringify(_name), .mode = 0444 }, \
1089
		.show = zcache_##_name##_show, \
1090
	}
1091
1092
#define ZCACHE_SYSFS_RO_CUSTOM(_name, _func) \
1093
	static ssize_t zcache_##_name##_show(struct kobject *kobj, \
1094
				struct kobj_attribute *attr, char *buf) \
1095
	{ \
1096
	    return _func(buf); \
1097
	} \
1098
	static struct kobj_attribute zcache_##_name##_attr = { \
1099
		.attr = { .name = __stringify(_name), .mode = 0444 }, \
1100
		.show = zcache_##_name##_show, \
1101
	}
1102
1103
ZCACHE_SYSFS_RO(curr_obj_count_max);
1104
ZCACHE_SYSFS_RO(curr_objnode_count_max);
1105
ZCACHE_SYSFS_RO(flush_total);
1106
ZCACHE_SYSFS_RO(flush_found);
1107
ZCACHE_SYSFS_RO(flobj_total);
1108
ZCACHE_SYSFS_RO(flobj_found);
1109
ZCACHE_SYSFS_RO(failed_eph_puts);
1110
ZCACHE_SYSFS_RO(failed_pers_puts);
1111
ZCACHE_SYSFS_RO(zbud_curr_zbytes);
1112
ZCACHE_SYSFS_RO(zbud_cumul_zpages);
1113
ZCACHE_SYSFS_RO(zbud_cumul_zbytes);
1114
ZCACHE_SYSFS_RO(zbud_buddied_count);
1115
ZCACHE_SYSFS_RO(zbpg_unused_list_count);
1116
ZCACHE_SYSFS_RO(evicted_raw_pages);
1117
ZCACHE_SYSFS_RO(evicted_unbuddied_pages);
1118
ZCACHE_SYSFS_RO(evicted_buddied_pages);
1119
ZCACHE_SYSFS_RO(failed_get_free_pages);
1120
ZCACHE_SYSFS_RO(failed_alloc);
1121
ZCACHE_SYSFS_RO(put_to_flush);
1122
ZCACHE_SYSFS_RO(aborted_preload);
1123
ZCACHE_SYSFS_RO(aborted_shrink);
1124
ZCACHE_SYSFS_RO(compress_poor);
1125
ZCACHE_SYSFS_RO_ATOMIC(zbud_curr_raw_pages);
1126
ZCACHE_SYSFS_RO_ATOMIC(zbud_curr_zpages);
1127
ZCACHE_SYSFS_RO_ATOMIC(curr_obj_count);
1128
ZCACHE_SYSFS_RO_ATOMIC(curr_objnode_count);
1129
ZCACHE_SYSFS_RO_CUSTOM(zbud_unbuddied_list_counts,
1130
			zbud_show_unbuddied_list_counts);
1131
ZCACHE_SYSFS_RO_CUSTOM(zbud_cumul_chunk_counts,
1132
			zbud_show_cumul_chunk_counts);
1133
1134
static struct attribute *zcache_attrs[] = {
1135
	&zcache_curr_obj_count_attr.attr,
1136
	&zcache_curr_obj_count_max_attr.attr,
1137
	&zcache_curr_objnode_count_attr.attr,
1138
	&zcache_curr_objnode_count_max_attr.attr,
1139
	&zcache_flush_total_attr.attr,
1140
	&zcache_flobj_total_attr.attr,
1141
	&zcache_flush_found_attr.attr,
1142
	&zcache_flobj_found_attr.attr,
1143
	&zcache_failed_eph_puts_attr.attr,
1144
	&zcache_failed_pers_puts_attr.attr,
1145
	&zcache_compress_poor_attr.attr,
1146
	&zcache_zbud_curr_raw_pages_attr.attr,
1147
	&zcache_zbud_curr_zpages_attr.attr,
1148
	&zcache_zbud_curr_zbytes_attr.attr,
1149
	&zcache_zbud_cumul_zpages_attr.attr,
1150
	&zcache_zbud_cumul_zbytes_attr.attr,
1151
	&zcache_zbud_buddied_count_attr.attr,
1152
	&zcache_zbpg_unused_list_count_attr.attr,
1153
	&zcache_evicted_raw_pages_attr.attr,
1154
	&zcache_evicted_unbuddied_pages_attr.attr,
1155
	&zcache_evicted_buddied_pages_attr.attr,
1156
	&zcache_failed_get_free_pages_attr.attr,
1157
	&zcache_failed_alloc_attr.attr,
1158
	&zcache_put_to_flush_attr.attr,
1159
	&zcache_aborted_preload_attr.attr,
1160
	&zcache_aborted_shrink_attr.attr,
1161
	&zcache_zbud_unbuddied_list_counts_attr.attr,
1162
	&zcache_zbud_cumul_chunk_counts_attr.attr,
1163
	NULL,
1164
};
1165
1166
static struct attribute_group zcache_attr_group = {
1167
	.attrs = zcache_attrs,
1168
	.name = "zcache",
1169
};
1170
1171
#endif /* CONFIG_SYSFS */
1172
/*
1173
 * When zcache is disabled ("frozen"), pools can be created and destroyed,
1174
 * but all puts (and thus all other operations that require memory allocation)
1175
 * must fail.  If zcache is unfrozen, accepts puts, then frozen again,
1176
 * data consistency requires all puts while frozen to be converted into
1177
 * flushes.
1178
 */
1179
static bool zcache_freeze;
1180
1181
/*
1182
 * zcache shrinker interface (only useful for ephemeral pages, so zbud only)
1183
 */
1184
static int shrink_zcache_memory(struct shrinker *shrink,
1185
				struct shrink_control *sc)
1186
{
1187
	int ret = -1;
1188
	int nr = sc->nr_to_scan;
1189
	gfp_t gfp_mask = sc->gfp_mask;
1190
1191
	if (nr >= 0) {
1192
		if (!(gfp_mask & __GFP_FS))
1193
			/* does this case really need to be skipped? */
1194
			goto out;
1195
		if (spin_trylock(&zcache_direct_reclaim_lock)) {
1196
			zbud_evict_pages(nr);
1197
			spin_unlock(&zcache_direct_reclaim_lock);
1198
		} else
1199
			zcache_aborted_shrink++;
1200
	}
1201
	ret = (int)atomic_read(&zcache_zbud_curr_raw_pages);
1202
out:
1203
	return ret;
1204
}
1205
1206
static struct shrinker zcache_shrinker = {
1207
	.shrink = shrink_zcache_memory,
1208
	.seeks = DEFAULT_SEEKS,
1209
};
1210
1211
/*
1212
 * zcache shims between cleancache/frontswap ops and tmem
1213
 */
1214
1215
static int zcache_put_page(int pool_id, struct tmem_oid *oidp,
1216
				uint32_t index, struct page *page)
1217
{
1218
	struct tmem_pool *pool;
1219
	int ret = -1;
1220
1221
	BUG_ON(!irqs_disabled());
1222
	pool = zcache_get_pool_by_id(pool_id);
1223
	if (unlikely(pool == NULL))
1224
		goto out;
1225
	if (!zcache_freeze && zcache_do_preload(pool) == 0) {
1226
		/* preload does preempt_disable on success */
1227
		ret = tmem_put(pool, oidp, index, page);
1228
		if (ret < 0) {
1229
			if (is_ephemeral(pool))
1230
				zcache_failed_eph_puts++;
1231
			else
1232
				zcache_failed_pers_puts++;
1233
		}
1234
		zcache_put_pool(pool);
1235
		preempt_enable_no_resched();
1236
	} else {
1237
		zcache_put_to_flush++;
1238
		if (atomic_read(&pool->obj_count) > 0)
1239
			/* the put fails whether the flush succeeds or not */
1240
			(void)tmem_flush_page(pool, oidp, index);
1241
		zcache_put_pool(pool);
1242
	}
1243
out:
1244
	return ret;
1245
}
1246
1247
static int zcache_get_page(int pool_id, struct tmem_oid *oidp,
1248
				uint32_t index, struct page *page)
1249
{
1250
	struct tmem_pool *pool;
1251
	int ret = -1;
1252
	unsigned long flags;
1253
1254
	local_irq_save(flags);
1255
	pool = zcache_get_pool_by_id(pool_id);
1256
	if (likely(pool != NULL)) {
1257
		if (atomic_read(&pool->obj_count) > 0)
1258
			ret = tmem_get(pool, oidp, index, page);
1259
		zcache_put_pool(pool);
1260
	}
1261
	local_irq_restore(flags);
1262
	return ret;
1263
}
1264
1265
static int zcache_flush_page(int pool_id, struct tmem_oid *oidp, uint32_t index)
1266
{
1267
	struct tmem_pool *pool;
1268
	int ret = -1;
1269
	unsigned long flags;
1270
1271
	local_irq_save(flags);
1272
	zcache_flush_total++;
1273
	pool = zcache_get_pool_by_id(pool_id);
1274
	if (likely(pool != NULL)) {
1275
		if (atomic_read(&pool->obj_count) > 0)
1276
			ret = tmem_flush_page(pool, oidp, index);
1277
		zcache_put_pool(pool);
1278
	}
1279
	if (ret >= 0)
1280
		zcache_flush_found++;
1281
	local_irq_restore(flags);
1282
	return ret;
1283
}
1284
1285
static int zcache_flush_object(int pool_id, struct tmem_oid *oidp)
1286
{
1287
	struct tmem_pool *pool;
1288
	int ret = -1;
1289
	unsigned long flags;
1290
1291
	local_irq_save(flags);
1292
	zcache_flobj_total++;
1293
	pool = zcache_get_pool_by_id(pool_id);
1294
	if (likely(pool != NULL)) {
1295
		if (atomic_read(&pool->obj_count) > 0)
1296
			ret = tmem_flush_object(pool, oidp);
1297
		zcache_put_pool(pool);
1298
	}
1299
	if (ret >= 0)
1300
		zcache_flobj_found++;
1301
	local_irq_restore(flags);
1302
	return ret;
1303
}
1304
1305
static int zcache_destroy_pool(int pool_id)
1306
{
1307
	struct tmem_pool *pool = NULL;
1308
	int ret = -1;
1309
1310
	if (pool_id < 0)
1311
		goto out;
1312
	pool = zcache_client.tmem_pools[pool_id];
1313
	if (pool == NULL)
1314
		goto out;
1315
	zcache_client.tmem_pools[pool_id] = NULL;
1316
	/* wait for pool activity on other cpus to quiesce */
1317
	while (atomic_read(&pool->refcount) != 0)
1318
		;
1319
	local_bh_disable();
1320
	ret = tmem_destroy_pool(pool);
1321
	local_bh_enable();
1322
	kfree(pool);
1323
	pr_info("zcache: destroyed pool id=%d\n", pool_id);
1324
out:
1325
	return ret;
1326
}
1327
1328
static int zcache_new_pool(uint32_t flags)
1329
{
1330
	int poolid = -1;
1331
	struct tmem_pool *pool;
1332
1333
	pool = kmalloc(sizeof(struct tmem_pool), GFP_KERNEL);
1334
	if (pool == NULL) {
1335
		pr_info("zcache: pool creation failed: out of memory\n");
1336
		goto out;
1337
	}
1338
1339
	for (poolid = 0; poolid < MAX_POOLS_PER_CLIENT; poolid++)
1340
		if (zcache_client.tmem_pools[poolid] == NULL)
1341
			break;
1342
	if (poolid >= MAX_POOLS_PER_CLIENT) {
1343
		pr_info("zcache: pool creation failed: max exceeded\n");
1344
		kfree(pool);
1345
		poolid = -1;
1346
		goto out;
1347
	}
1348
	atomic_set(&pool->refcount, 0);
1349
	pool->client = &zcache_client;
1350
	pool->pool_id = poolid;
1351
	tmem_new_pool(pool, flags);
1352
	zcache_client.tmem_pools[poolid] = pool;
1353
	pr_info("zcache: created %s tmem pool, id=%d\n",
1354
		flags & TMEM_POOL_PERSIST ? "persistent" : "ephemeral",
1355
		poolid);
1356
out:
1357
	return poolid;
1358
}
1359
1360
/**********
1361
 * Two kernel functionalities currently can be layered on top of tmem.
1362
 * These are "cleancache" which is used as a second-chance cache for clean
1363
 * page cache pages; and "frontswap" which is used for swap pages
1364
 * to avoid writes to disk.  A generic "shim" is provided here for each
1365
 * to translate in-kernel semantics to zcache semantics.
1366
 */
1367
1368
#ifdef CONFIG_CLEANCACHE
1369
static void zcache_cleancache_put_page(int pool_id,
1370
					struct cleancache_filekey key,
1371
					pgoff_t index, struct page *page)
1372
{
1373
	u32 ind = (u32) index;
1374
	struct tmem_oid oid = *(struct tmem_oid *)&key;
1375
1376
	if (likely(ind == index))
1377
		(void)zcache_put_page(pool_id, &oid, index, page);
1378
}
1379
1380
static int zcache_cleancache_get_page(int pool_id,
1381
					struct cleancache_filekey key,
1382
					pgoff_t index, struct page *page)
1383
{
1384
	u32 ind = (u32) index;
1385
	struct tmem_oid oid = *(struct tmem_oid *)&key;
1386
	int ret = -1;
1387
1388
	if (likely(ind == index))
1389
		ret = zcache_get_page(pool_id, &oid, index, page);
1390
	return ret;
1391
}
1392
1393
static void zcache_cleancache_flush_page(int pool_id,
1394
					struct cleancache_filekey key,
1395
					pgoff_t index)
1396
{
1397
	u32 ind = (u32) index;
1398
	struct tmem_oid oid = *(struct tmem_oid *)&key;
1399
1400
	if (likely(ind == index))
1401
		(void)zcache_flush_page(pool_id, &oid, ind);
1402
}
1403
1404
static void zcache_cleancache_flush_inode(int pool_id,
1405
					struct cleancache_filekey key)
1406
{
1407
	struct tmem_oid oid = *(struct tmem_oid *)&key;
1408
1409
	(void)zcache_flush_object(pool_id, &oid);
1410
}
1411
1412
static void zcache_cleancache_flush_fs(int pool_id)
1413
{
1414
	if (pool_id >= 0)
1415
		(void)zcache_destroy_pool(pool_id);
1416
}
1417
1418
static int zcache_cleancache_init_fs(size_t pagesize)
1419
{
1420
	BUG_ON(sizeof(struct cleancache_filekey) !=
1421
				sizeof(struct tmem_oid));
1422
	BUG_ON(pagesize != PAGE_SIZE);
1423
	return zcache_new_pool(0);
1424
}
1425
1426
static int zcache_cleancache_init_shared_fs(char *uuid, size_t pagesize)
1427
{
1428
	/* shared pools are unsupported and map to private */
1429
	BUG_ON(sizeof(struct cleancache_filekey) !=
1430
				sizeof(struct tmem_oid));
1431
	BUG_ON(pagesize != PAGE_SIZE);
1432
	return zcache_new_pool(0);
1433
}
1434
1435
static struct cleancache_ops zcache_cleancache_ops = {
1436
	.put_page = zcache_cleancache_put_page,
1437
	.get_page = zcache_cleancache_get_page,
1438
	.flush_page = zcache_cleancache_flush_page,
1439
	.flush_inode = zcache_cleancache_flush_inode,
1440
	.flush_fs = zcache_cleancache_flush_fs,
1441
	.init_shared_fs = zcache_cleancache_init_shared_fs,
1442
	.init_fs = zcache_cleancache_init_fs
1443
};
1444
1445
struct cleancache_ops zcache_cleancache_register_ops(void)
1446
{
1447
	struct cleancache_ops old_ops =
1448
		cleancache_register_ops(&zcache_cleancache_ops);
1449
1450
	return old_ops;
1451
}
1452
#endif
1453
1454
#ifdef CONFIG_FRONTSWAP
1455
/* a single tmem poolid is used for all frontswap "types" (swapfiles) */
1456
static int zcache_frontswap_poolid = -1;
1457
1458
/*
1459
 * Swizzling increases objects per swaptype, increasing tmem concurrency
1460
 * for heavy swaploads.  Later, larger nr_cpus -> larger SWIZ_BITS
1461
 */
1462
#define SWIZ_BITS		4
1463
#define SWIZ_MASK		((1 << SWIZ_BITS) - 1)
1464
#define _oswiz(_type, _ind)	((_type << SWIZ_BITS) | (_ind & SWIZ_MASK))
1465
#define iswiz(_ind)		(_ind >> SWIZ_BITS)
1466
1467
static inline struct tmem_oid oswiz(unsigned type, u32 ind)
1468
{
1469
	struct tmem_oid oid = { .oid = { 0 } };
1470
	oid.oid[0] = _oswiz(type, ind);
1471
	return oid;
1472
}
1473
1474
static int zcache_frontswap_put_page(unsigned type, pgoff_t offset,
1475
				   struct page *page)
1476
{
1477
	u64 ind64 = (u64)offset;
1478
	u32 ind = (u32)offset;
1479
	struct tmem_oid oid = oswiz(type, ind);
1480
	int ret = -1;
1481
	unsigned long flags;
1482
1483
	BUG_ON(!PageLocked(page));
1484
	if (likely(ind64 == ind)) {
1485
		local_irq_save(flags);
1486
		ret = zcache_put_page(zcache_frontswap_poolid, &oid,
1487
					iswiz(ind), page);
1488
		local_irq_restore(flags);
1489
	}
1490
	return ret;
1491
}
1492
1493
/* returns 0 if the page was successfully gotten from frontswap, -1 if
1494
 * was not present (should never happen!) */
1495
static int zcache_frontswap_get_page(unsigned type, pgoff_t offset,
1496
				   struct page *page)
1497
{
1498
	u64 ind64 = (u64)offset;
1499
	u32 ind = (u32)offset;
1500
	struct tmem_oid oid = oswiz(type, ind);
1501
	int ret = -1;
1502
1503
	BUG_ON(!PageLocked(page));
1504
	if (likely(ind64 == ind))
1505
		ret = zcache_get_page(zcache_frontswap_poolid, &oid,
1506
					iswiz(ind), page);
1507
	return ret;
1508
}
1509
1510
/* flush a single page from frontswap */
1511
static void zcache_frontswap_flush_page(unsigned type, pgoff_t offset)
1512
{
1513
	u64 ind64 = (u64)offset;
1514
	u32 ind = (u32)offset;
1515
	struct tmem_oid oid = oswiz(type, ind);
1516
1517
	if (likely(ind64 == ind))
1518
		(void)zcache_flush_page(zcache_frontswap_poolid, &oid,
1519
					iswiz(ind));
1520
}
1521
1522
/* flush all pages from the passed swaptype */
1523
static void zcache_frontswap_flush_area(unsigned type)
1524
{
1525
	struct tmem_oid oid;
1526
	int ind;
1527
1528
	for (ind = SWIZ_MASK; ind >= 0; ind--) {
1529
		oid = oswiz(type, ind);
1530
		(void)zcache_flush_object(zcache_frontswap_poolid, &oid);
1531
	}
1532
}
1533
1534
static void zcache_frontswap_init(unsigned ignored)
1535
{
1536
	/* a single tmem poolid is used for all frontswap "types" (swapfiles) */
1537
	if (zcache_frontswap_poolid < 0)
1538
		zcache_frontswap_poolid = zcache_new_pool(TMEM_POOL_PERSIST);
1539
}
1540
1541
static struct frontswap_ops zcache_frontswap_ops = {
1542
	.put_page = zcache_frontswap_put_page,
1543
	.get_page = zcache_frontswap_get_page,
1544
	.flush_page = zcache_frontswap_flush_page,
1545
	.flush_area = zcache_frontswap_flush_area,
1546
	.init = zcache_frontswap_init
1547
};
1548
1549
struct frontswap_ops zcache_frontswap_register_ops(void)
1550
{
1551
	struct frontswap_ops old_ops =
1552
		frontswap_register_ops(&zcache_frontswap_ops);
1553
1554
	return old_ops;
1555
}
1556
#endif
1557
1558
/*
1559
 * zcache initialization
1560
 * NOTE FOR NOW zcache MUST BE PROVIDED AS A KERNEL BOOT PARAMETER OR
1561
 * NOTHING HAPPENS!
1562
 */
1563
1564
static int zcache_enabled;
1565
1566
static int __init enable_zcache(char *s)
1567
{
1568
	zcache_enabled = 1;
1569
	return 1;
1570
}
1571
__setup("zcache", enable_zcache);
1572
1573
/* allow independent dynamic disabling of cleancache and frontswap */
1574
1575
static int use_cleancache = 1;
1576
1577
static int __init no_cleancache(char *s)
1578
{
1579
	use_cleancache = 0;
1580
	return 1;
1581
}
1582
1583
__setup("nocleancache", no_cleancache);
1584
1585
static int use_frontswap = 1;
1586
1587
static int __init no_frontswap(char *s)
1588
{
1589
	use_frontswap = 0;
1590
	return 1;
1591
}
1592
1593
__setup("nofrontswap", no_frontswap);
1594
1595
static int __init zcache_init(void)
1596
{
1597
#ifdef CONFIG_SYSFS
1598
	int ret = 0;
1599
1600
	ret = sysfs_create_group(mm_kobj, &zcache_attr_group);
1601
	if (ret) {
1602
		pr_err("zcache: can't create sysfs\n");
1603
		goto out;
1604
	}
1605
#endif /* CONFIG_SYSFS */
1606
#if defined(CONFIG_CLEANCACHE) || defined(CONFIG_FRONTSWAP)
1607
	if (zcache_enabled) {
1608
		unsigned int cpu;
1609
1610
		tmem_register_hostops(&zcache_hostops);
1611
		tmem_register_pamops(&zcache_pamops);
1612
		ret = register_cpu_notifier(&zcache_cpu_notifier_block);
1613
		if (ret) {
1614
			pr_err("zcache: can't register cpu notifier\n");
1615
			goto out;
1616
		}
1617
		for_each_online_cpu(cpu) {
1618
			void *pcpu = (void *)(long)cpu;
1619
			zcache_cpu_notifier(&zcache_cpu_notifier_block,
1620
				CPU_UP_PREPARE, pcpu);
1621
		}
1622
	}
1623
	zcache_objnode_cache = kmem_cache_create("zcache_objnode",
1624
				sizeof(struct tmem_objnode), 0, 0, NULL);
1625
	zcache_obj_cache = kmem_cache_create("zcache_obj",
1626
				sizeof(struct tmem_obj), 0, 0, NULL);
1627
#endif
1628
#ifdef CONFIG_CLEANCACHE
1629
	if (zcache_enabled && use_cleancache) {
1630
		struct cleancache_ops old_ops;
1631
1632
		zbud_init();
1633
		register_shrinker(&zcache_shrinker);
1634
		old_ops = zcache_cleancache_register_ops();
1635
		pr_info("zcache: cleancache enabled using kernel "
1636
			"transcendent memory and compression buddies\n");
1637
		if (old_ops.init_fs != NULL)
1638
			pr_warning("zcache: cleancache_ops overridden");
1639
	}
1640
#endif
1641
#ifdef CONFIG_FRONTSWAP
1642
	if (zcache_enabled && use_frontswap) {
1643
		struct frontswap_ops old_ops;
1644
1645
		zcache_client.xvpool = xv_create_pool();
1646
		if (zcache_client.xvpool == NULL) {
1647
			pr_err("zcache: can't create xvpool\n");
1648
			goto out;
1649
		}
1650
		old_ops = zcache_frontswap_register_ops();
1651
		pr_info("zcache: frontswap enabled using kernel "
1652
			"transcendent memory and xvmalloc\n");
1653
		if (old_ops.init != NULL)
1654
			pr_warning("ktmem: frontswap_ops overridden");
1655
	}
1656
#endif
1657
out:
1658
	return ret;
1659
}
1660
1661
module_init(zcache_init)
(-)drivers.old//staging/zcache/zcache_drv.c (+1661 lines)
Line 0 Link Here
1
/*
2
 * zcache.c
3
 *
4
 * Copyright (c) 2010,2011, Dan Magenheimer, Oracle Corp.
5
 * Copyright (c) 2010,2011, Nitin Gupta
6
 *
7
 * Zcache provides an in-kernel "host implementation" for transcendent memory
8
 * and, thus indirectly, for cleancache and frontswap.  Zcache includes two
9
 * page-accessible memory [1] interfaces, both utilizing lzo1x compression:
10
 * 1) "compression buddies" ("zbud") is used for ephemeral pages
11
 * 2) xvmalloc is used for persistent pages.
12
 * Xvmalloc (based on the TLSF allocator) has very low fragmentation
13
 * so maximizes space efficiency, while zbud allows pairs (and potentially,
14
 * in the future, more than a pair of) compressed pages to be closely linked
15
 * so that reclaiming can be done via the kernel's physical-page-oriented
16
 * "shrinker" interface.
17
 *
18
 * [1] For a definition of page-accessible memory (aka PAM), see:
19
 *   http://marc.info/?l=linux-mm&m=127811271605009
20
 */
21
22
#include <linux/cpu.h>
23
#include <linux/highmem.h>
24
#include <linux/list.h>
25
#include <linux/lzo.h>
26
#include <linux/slab.h>
27
#include <linux/spinlock.h>
28
#include <linux/types.h>
29
#include <linux/atomic.h>
30
#include "tmem.h"
31
32
#include "../zram/xvmalloc.h" /* if built in drivers/staging */
33
34
#if (!defined(CONFIG_CLEANCACHE) && !defined(CONFIG_FRONTSWAP))
35
#error "zcache is useless without CONFIG_CLEANCACHE or CONFIG_FRONTSWAP"
36
#endif
37
#ifdef CONFIG_CLEANCACHE
38
#include <linux/cleancache.h>
39
#endif
40
#ifdef CONFIG_FRONTSWAP
41
#include <linux/frontswap.h>
42
#endif
43
44
#if 0
45
/* this is more aggressive but may cause other problems? */
46
#define ZCACHE_GFP_MASK	(GFP_ATOMIC | __GFP_NORETRY | __GFP_NOWARN)
47
#else
48
#define ZCACHE_GFP_MASK \
49
	(__GFP_FS | __GFP_NORETRY | __GFP_NOWARN | __GFP_NOMEMALLOC)
50
#endif
51
52
/**********
53
 * Compression buddies ("zbud") provides for packing two (or, possibly
54
 * in the future, more) compressed ephemeral pages into a single "raw"
55
 * (physical) page and tracking them with data structures so that
56
 * the raw pages can be easily reclaimed.
57
 *
58
 * A zbud page ("zbpg") is an aligned page containing a list_head,
59
 * a lock, and two "zbud headers".  The remainder of the physical
60
 * page is divided up into aligned 64-byte "chunks" which contain
61
 * the compressed data for zero, one, or two zbuds.  Each zbpg
62
 * resides on: (1) an "unused list" if it has no zbuds; (2) a
63
 * "buddied" list if it is fully populated  with two zbuds; or
64
 * (3) one of PAGE_SIZE/64 "unbuddied" lists indexed by how many chunks
65
 * the one unbuddied zbud uses.  The data inside a zbpg cannot be
66
 * read or written unless the zbpg's lock is held.
67
 */
68
69
#define ZBH_SENTINEL  0x43214321
70
#define ZBPG_SENTINEL  0xdeadbeef
71
72
#define ZBUD_MAX_BUDS 2
73
74
struct zbud_hdr {
75
	uint32_t pool_id;
76
	struct tmem_oid oid;
77
	uint32_t index;
78
	uint16_t size; /* compressed size in bytes, zero means unused */
79
	DECL_SENTINEL
80
};
81
82
struct zbud_page {
83
	struct list_head bud_list;
84
	spinlock_t lock;
85
	struct zbud_hdr buddy[ZBUD_MAX_BUDS];
86
	DECL_SENTINEL
87
	/* followed by NUM_CHUNK aligned CHUNK_SIZE-byte chunks */
88
};
89
90
#define CHUNK_SHIFT	6
91
#define CHUNK_SIZE	(1 << CHUNK_SHIFT)
92
#define CHUNK_MASK	(~(CHUNK_SIZE-1))
93
#define NCHUNKS		(((PAGE_SIZE - sizeof(struct zbud_page)) & \
94
				CHUNK_MASK) >> CHUNK_SHIFT)
95
#define MAX_CHUNK	(NCHUNKS-1)
96
97
static struct {
98
	struct list_head list;
99
	unsigned count;
100
} zbud_unbuddied[NCHUNKS];
101
/* list N contains pages with N chunks USED and NCHUNKS-N unused */
102
/* element 0 is never used but optimizing that isn't worth it */
103
static unsigned long zbud_cumul_chunk_counts[NCHUNKS];
104
105
struct list_head zbud_buddied_list;
106
static unsigned long zcache_zbud_buddied_count;
107
108
/* protects the buddied list and all unbuddied lists */
109
static DEFINE_SPINLOCK(zbud_budlists_spinlock);
110
111
static LIST_HEAD(zbpg_unused_list);
112
static unsigned long zcache_zbpg_unused_list_count;
113
114
/* protects the unused page list */
115
static DEFINE_SPINLOCK(zbpg_unused_list_spinlock);
116
117
static atomic_t zcache_zbud_curr_raw_pages;
118
static atomic_t zcache_zbud_curr_zpages;
119
static unsigned long zcache_zbud_curr_zbytes;
120
static unsigned long zcache_zbud_cumul_zpages;
121
static unsigned long zcache_zbud_cumul_zbytes;
122
static unsigned long zcache_compress_poor;
123
124
/* forward references */
125
static void *zcache_get_free_page(void);
126
static void zcache_free_page(void *p);
127
128
/*
129
 * zbud helper functions
130
 */
131
132
static inline unsigned zbud_max_buddy_size(void)
133
{
134
	return MAX_CHUNK << CHUNK_SHIFT;
135
}
136
137
static inline unsigned zbud_size_to_chunks(unsigned size)
138
{
139
	BUG_ON(size == 0 || size > zbud_max_buddy_size());
140
	return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
141
}
142
143
static inline int zbud_budnum(struct zbud_hdr *zh)
144
{
145
	unsigned offset = (unsigned long)zh & (PAGE_SIZE - 1);
146
	struct zbud_page *zbpg = NULL;
147
	unsigned budnum = -1U;
148
	int i;
149
150
	for (i = 0; i < ZBUD_MAX_BUDS; i++)
151
		if (offset == offsetof(typeof(*zbpg), buddy[i])) {
152
			budnum = i;
153
			break;
154
		}
155
	BUG_ON(budnum == -1U);
156
	return budnum;
157
}
158
159
static char *zbud_data(struct zbud_hdr *zh, unsigned size)
160
{
161
	struct zbud_page *zbpg;
162
	char *p;
163
	unsigned budnum;
164
165
	ASSERT_SENTINEL(zh, ZBH);
166
	budnum = zbud_budnum(zh);
167
	BUG_ON(size == 0 || size > zbud_max_buddy_size());
168
	zbpg = container_of(zh, struct zbud_page, buddy[budnum]);
169
	ASSERT_SPINLOCK(&zbpg->lock);
170
	p = (char *)zbpg;
171
	if (budnum == 0)
172
		p += ((sizeof(struct zbud_page) + CHUNK_SIZE - 1) &
173
							CHUNK_MASK);
174
	else if (budnum == 1)
175
		p += PAGE_SIZE - ((size + CHUNK_SIZE - 1) & CHUNK_MASK);
176
	return p;
177
}
178
179
/*
180
 * zbud raw page management
181
 */
182
183
static struct zbud_page *zbud_alloc_raw_page(void)
184
{
185
	struct zbud_page *zbpg = NULL;
186
	struct zbud_hdr *zh0, *zh1;
187
	bool recycled = 0;
188
189
	/* if any pages on the zbpg list, use one */
190
	spin_lock(&zbpg_unused_list_spinlock);
191
	if (!list_empty(&zbpg_unused_list)) {
192
		zbpg = list_first_entry(&zbpg_unused_list,
193
				struct zbud_page, bud_list);
194
		list_del_init(&zbpg->bud_list);
195
		zcache_zbpg_unused_list_count--;
196
		recycled = 1;
197
	}
198
	spin_unlock(&zbpg_unused_list_spinlock);
199
	if (zbpg == NULL)
200
		/* none on zbpg list, try to get a kernel page */
201
		zbpg = zcache_get_free_page();
202
	if (likely(zbpg != NULL)) {
203
		INIT_LIST_HEAD(&zbpg->bud_list);
204
		zh0 = &zbpg->buddy[0]; zh1 = &zbpg->buddy[1];
205
		spin_lock_init(&zbpg->lock);
206
		if (recycled) {
207
			ASSERT_INVERTED_SENTINEL(zbpg, ZBPG);
208
			SET_SENTINEL(zbpg, ZBPG);
209
			BUG_ON(zh0->size != 0 || tmem_oid_valid(&zh0->oid));
210
			BUG_ON(zh1->size != 0 || tmem_oid_valid(&zh1->oid));
211
		} else {
212
			atomic_inc(&zcache_zbud_curr_raw_pages);
213
			INIT_LIST_HEAD(&zbpg->bud_list);
214
			SET_SENTINEL(zbpg, ZBPG);
215
			zh0->size = 0; zh1->size = 0;
216
			tmem_oid_set_invalid(&zh0->oid);
217
			tmem_oid_set_invalid(&zh1->oid);
218
		}
219
	}
220
	return zbpg;
221
}
222
223
static void zbud_free_raw_page(struct zbud_page *zbpg)
224
{
225
	struct zbud_hdr *zh0 = &zbpg->buddy[0], *zh1 = &zbpg->buddy[1];
226
227
	ASSERT_SENTINEL(zbpg, ZBPG);
228
	BUG_ON(!list_empty(&zbpg->bud_list));
229
	ASSERT_SPINLOCK(&zbpg->lock);
230
	BUG_ON(zh0->size != 0 || tmem_oid_valid(&zh0->oid));
231
	BUG_ON(zh1->size != 0 || tmem_oid_valid(&zh1->oid));
232
	INVERT_SENTINEL(zbpg, ZBPG);
233
	spin_unlock(&zbpg->lock);
234
	spin_lock(&zbpg_unused_list_spinlock);
235
	list_add(&zbpg->bud_list, &zbpg_unused_list);
236
	zcache_zbpg_unused_list_count++;
237
	spin_unlock(&zbpg_unused_list_spinlock);
238
}
239
240
/*
241
 * core zbud handling routines
242
 */
243
244
static unsigned zbud_free(struct zbud_hdr *zh)
245
{
246
	unsigned size;
247
248
	ASSERT_SENTINEL(zh, ZBH);
249
	BUG_ON(!tmem_oid_valid(&zh->oid));
250
	size = zh->size;
251
	BUG_ON(zh->size == 0 || zh->size > zbud_max_buddy_size());
252
	zh->size = 0;
253
	tmem_oid_set_invalid(&zh->oid);
254
	INVERT_SENTINEL(zh, ZBH);
255
	zcache_zbud_curr_zbytes -= size;
256
	atomic_dec(&zcache_zbud_curr_zpages);
257
	return size;
258
}
259
260
static void zbud_free_and_delist(struct zbud_hdr *zh)
261
{
262
	unsigned chunks;
263
	struct zbud_hdr *zh_other;
264
	unsigned budnum = zbud_budnum(zh), size;
265
	struct zbud_page *zbpg =
266
		container_of(zh, struct zbud_page, buddy[budnum]);
267
268
	spin_lock(&zbpg->lock);
269
	if (list_empty(&zbpg->bud_list)) {
270
		/* ignore zombie page... see zbud_evict_pages() */
271
		spin_unlock(&zbpg->lock);
272
		return;
273
	}
274
	size = zbud_free(zh);
275
	ASSERT_SPINLOCK(&zbpg->lock);
276
	zh_other = &zbpg->buddy[(budnum == 0) ? 1 : 0];
277
	if (zh_other->size == 0) { /* was unbuddied: unlist and free */
278
		chunks = zbud_size_to_chunks(size) ;
279
		spin_lock(&zbud_budlists_spinlock);
280
		BUG_ON(list_empty(&zbud_unbuddied[chunks].list));
281
		list_del_init(&zbpg->bud_list);
282
		zbud_unbuddied[chunks].count--;
283
		spin_unlock(&zbud_budlists_spinlock);
284
		zbud_free_raw_page(zbpg);
285
	} else { /* was buddied: move remaining buddy to unbuddied list */
286
		chunks = zbud_size_to_chunks(zh_other->size) ;
287
		spin_lock(&zbud_budlists_spinlock);
288
		list_del_init(&zbpg->bud_list);
289
		zcache_zbud_buddied_count--;
290
		list_add_tail(&zbpg->bud_list, &zbud_unbuddied[chunks].list);
291
		zbud_unbuddied[chunks].count++;
292
		spin_unlock(&zbud_budlists_spinlock);
293
		spin_unlock(&zbpg->lock);
294
	}
295
}
296
297
static struct zbud_hdr *zbud_create(uint32_t pool_id, struct tmem_oid *oid,
298
					uint32_t index, struct page *page,
299
					void *cdata, unsigned size)
300
{
301
	struct zbud_hdr *zh0, *zh1, *zh = NULL;
302
	struct zbud_page *zbpg = NULL, *ztmp;
303
	unsigned nchunks;
304
	char *to;
305
	int i, found_good_buddy = 0;
306
307
	nchunks = zbud_size_to_chunks(size) ;
308
	for (i = MAX_CHUNK - nchunks + 1; i > 0; i--) {
309
		spin_lock(&zbud_budlists_spinlock);
310
		if (!list_empty(&zbud_unbuddied[i].list)) {
311
			list_for_each_entry_safe(zbpg, ztmp,
312
				    &zbud_unbuddied[i].list, bud_list) {
313
				if (spin_trylock(&zbpg->lock)) {
314
					found_good_buddy = i;
315
					goto found_unbuddied;
316
				}
317
			}
318
		}
319
		spin_unlock(&zbud_budlists_spinlock);
320
	}
321
	/* didn't find a good buddy, try allocating a new page */
322
	zbpg = zbud_alloc_raw_page();
323
	if (unlikely(zbpg == NULL))
324
		goto out;
325
	/* ok, have a page, now compress the data before taking locks */
326
	spin_lock(&zbpg->lock);
327
	spin_lock(&zbud_budlists_spinlock);
328
	list_add_tail(&zbpg->bud_list, &zbud_unbuddied[nchunks].list);
329
	zbud_unbuddied[nchunks].count++;
330
	zh = &zbpg->buddy[0];
331
	goto init_zh;
332
333
found_unbuddied:
334
	ASSERT_SPINLOCK(&zbpg->lock);
335
	zh0 = &zbpg->buddy[0]; zh1 = &zbpg->buddy[1];
336
	BUG_ON(!((zh0->size == 0) ^ (zh1->size == 0)));
337
	if (zh0->size != 0) { /* buddy0 in use, buddy1 is vacant */
338
		ASSERT_SENTINEL(zh0, ZBH);
339
		zh = zh1;
340
	} else if (zh1->size != 0) { /* buddy1 in use, buddy0 is vacant */
341
		ASSERT_SENTINEL(zh1, ZBH);
342
		zh = zh0;
343
	} else
344
		BUG();
345
	list_del_init(&zbpg->bud_list);
346
	zbud_unbuddied[found_good_buddy].count--;
347
	list_add_tail(&zbpg->bud_list, &zbud_buddied_list);
348
	zcache_zbud_buddied_count++;
349
350
init_zh:
351
	SET_SENTINEL(zh, ZBH);
352
	zh->size = size;
353
	zh->index = index;
354
	zh->oid = *oid;
355
	zh->pool_id = pool_id;
356
	/* can wait to copy the data until the list locks are dropped */
357
	spin_unlock(&zbud_budlists_spinlock);
358
359
	to = zbud_data(zh, size);
360
	memcpy(to, cdata, size);
361
	spin_unlock(&zbpg->lock);
362
	zbud_cumul_chunk_counts[nchunks]++;
363
	atomic_inc(&zcache_zbud_curr_zpages);
364
	zcache_zbud_cumul_zpages++;
365
	zcache_zbud_curr_zbytes += size;
366
	zcache_zbud_cumul_zbytes += size;
367
out:
368
	return zh;
369
}
370
371
static int zbud_decompress(struct page *page, struct zbud_hdr *zh)
372
{
373
	struct zbud_page *zbpg;
374
	unsigned budnum = zbud_budnum(zh);
375
	size_t out_len = PAGE_SIZE;
376
	char *to_va, *from_va;
377
	unsigned size;
378
	int ret = 0;
379
380
	zbpg = container_of(zh, struct zbud_page, buddy[budnum]);
381
	spin_lock(&zbpg->lock);
382
	if (list_empty(&zbpg->bud_list)) {
383
		/* ignore zombie page... see zbud_evict_pages() */
384
		ret = -EINVAL;
385
		goto out;
386
	}
387
	ASSERT_SENTINEL(zh, ZBH);
388
	BUG_ON(zh->size == 0 || zh->size > zbud_max_buddy_size());
389
	to_va = kmap_atomic(page, KM_USER0);
390
	size = zh->size;
391
	from_va = zbud_data(zh, size);
392
	ret = lzo1x_decompress_safe(from_va, size, to_va, &out_len);
393
	BUG_ON(ret != LZO_E_OK);
394
	BUG_ON(out_len != PAGE_SIZE);
395
	kunmap_atomic(to_va, KM_USER0);
396
out:
397
	spin_unlock(&zbpg->lock);
398
	return ret;
399
}
400
401
/*
402
 * The following routines handle shrinking of ephemeral pages by evicting
403
 * pages "least valuable" first.
404
 */
405
406
static unsigned long zcache_evicted_raw_pages;
407
static unsigned long zcache_evicted_buddied_pages;
408
static unsigned long zcache_evicted_unbuddied_pages;
409
410
static struct tmem_pool *zcache_get_pool_by_id(uint32_t poolid);
411
static void zcache_put_pool(struct tmem_pool *pool);
412
413
/*
414
 * Flush and free all zbuds in a zbpg, then free the pageframe
415
 */
416
static void zbud_evict_zbpg(struct zbud_page *zbpg)
417
{
418
	struct zbud_hdr *zh;
419
	int i, j;
420
	uint32_t pool_id[ZBUD_MAX_BUDS], index[ZBUD_MAX_BUDS];
421
	struct tmem_oid oid[ZBUD_MAX_BUDS];
422
	struct tmem_pool *pool;
423
424
	ASSERT_SPINLOCK(&zbpg->lock);
425
	BUG_ON(!list_empty(&zbpg->bud_list));
426
	for (i = 0, j = 0; i < ZBUD_MAX_BUDS; i++) {
427
		zh = &zbpg->buddy[i];
428
		if (zh->size) {
429
			pool_id[j] = zh->pool_id;
430
			oid[j] = zh->oid;
431
			index[j] = zh->index;
432
			j++;
433
			zbud_free(zh);
434
		}
435
	}
436
	spin_unlock(&zbpg->lock);
437
	for (i = 0; i < j; i++) {
438
		pool = zcache_get_pool_by_id(pool_id[i]);
439
		if (pool != NULL) {
440
			tmem_flush_page(pool, &oid[i], index[i]);
441
			zcache_put_pool(pool);
442
		}
443
	}
444
	ASSERT_SENTINEL(zbpg, ZBPG);
445
	spin_lock(&zbpg->lock);
446
	zbud_free_raw_page(zbpg);
447
}
448
449
/*
450
 * Free nr pages.  This code is funky because we want to hold the locks
451
 * protecting various lists for as short a time as possible, and in some
452
 * circumstances the list may change asynchronously when the list lock is
453
 * not held.  In some cases we also trylock not only to avoid waiting on a
454
 * page in use by another cpu, but also to avoid potential deadlock due to
455
 * lock inversion.
456
 */
457
static void zbud_evict_pages(int nr)
458
{
459
	struct zbud_page *zbpg;
460
	int i;
461
462
	/* first try freeing any pages on unused list */
463
retry_unused_list:
464
	spin_lock_bh(&zbpg_unused_list_spinlock);
465
	if (!list_empty(&zbpg_unused_list)) {
466
		/* can't walk list here, since it may change when unlocked */
467
		zbpg = list_first_entry(&zbpg_unused_list,
468
				struct zbud_page, bud_list);
469
		list_del_init(&zbpg->bud_list);
470
		zcache_zbpg_unused_list_count--;
471
		atomic_dec(&zcache_zbud_curr_raw_pages);
472
		spin_unlock_bh(&zbpg_unused_list_spinlock);
473
		zcache_free_page(zbpg);
474
		zcache_evicted_raw_pages++;
475
		if (--nr <= 0)
476
			goto out;
477
		goto retry_unused_list;
478
	}
479
	spin_unlock_bh(&zbpg_unused_list_spinlock);
480
481
	/* now try freeing unbuddied pages, starting with least space avail */
482
	for (i = 0; i < MAX_CHUNK; i++) {
483
retry_unbud_list_i:
484
		spin_lock_bh(&zbud_budlists_spinlock);
485
		if (list_empty(&zbud_unbuddied[i].list)) {
486
			spin_unlock_bh(&zbud_budlists_spinlock);
487
			continue;
488
		}
489
		list_for_each_entry(zbpg, &zbud_unbuddied[i].list, bud_list) {
490
			if (unlikely(!spin_trylock(&zbpg->lock)))
491
				continue;
492
			list_del_init(&zbpg->bud_list);
493
			zbud_unbuddied[i].count--;
494
			spin_unlock(&zbud_budlists_spinlock);
495
			zcache_evicted_unbuddied_pages++;
496
			/* want budlists unlocked when doing zbpg eviction */
497
			zbud_evict_zbpg(zbpg);
498
			local_bh_enable();
499
			if (--nr <= 0)
500
				goto out;
501
			goto retry_unbud_list_i;
502
		}
503
		spin_unlock_bh(&zbud_budlists_spinlock);
504
	}
505
506
	/* as a last resort, free buddied pages */
507
retry_bud_list:
508
	spin_lock_bh(&zbud_budlists_spinlock);
509
	if (list_empty(&zbud_buddied_list)) {
510
		spin_unlock_bh(&zbud_budlists_spinlock);
511
		goto out;
512
	}
513
	list_for_each_entry(zbpg, &zbud_buddied_list, bud_list) {
514
		if (unlikely(!spin_trylock(&zbpg->lock)))
515
			continue;
516
		list_del_init(&zbpg->bud_list);
517
		zcache_zbud_buddied_count--;
518
		spin_unlock(&zbud_budlists_spinlock);
519
		zcache_evicted_buddied_pages++;
520
		/* want budlists unlocked when doing zbpg eviction */
521
		zbud_evict_zbpg(zbpg);
522
		local_bh_enable();
523
		if (--nr <= 0)
524
			goto out;
525
		goto retry_bud_list;
526
	}
527
	spin_unlock_bh(&zbud_budlists_spinlock);
528
out:
529
	return;
530
}
531
532
static void zbud_init(void)
533
{
534
	int i;
535
536
	INIT_LIST_HEAD(&zbud_buddied_list);
537
	zcache_zbud_buddied_count = 0;
538
	for (i = 0; i < NCHUNKS; i++) {
539
		INIT_LIST_HEAD(&zbud_unbuddied[i].list);
540
		zbud_unbuddied[i].count = 0;
541
	}
542
}
543
544
#ifdef CONFIG_SYSFS
545
/*
546
 * These sysfs routines show a nice distribution of how many zbpg's are
547
 * currently (and have ever been placed) in each unbuddied list.  It's fun
548
 * to watch but can probably go away before final merge.
549
 */
550
static int zbud_show_unbuddied_list_counts(char *buf)
551
{
552
	int i;
553
	char *p = buf;
554
555
	for (i = 0; i < NCHUNKS - 1; i++)
556
		p += sprintf(p, "%u ", zbud_unbuddied[i].count);
557
	p += sprintf(p, "%d\n", zbud_unbuddied[i].count);
558
	return p - buf;
559
}
560
561
static int zbud_show_cumul_chunk_counts(char *buf)
562
{
563
	unsigned long i, chunks = 0, total_chunks = 0, sum_total_chunks = 0;
564
	unsigned long total_chunks_lte_21 = 0, total_chunks_lte_32 = 0;
565
	unsigned long total_chunks_lte_42 = 0;
566
	char *p = buf;
567
568
	for (i = 0; i < NCHUNKS; i++) {
569
		p += sprintf(p, "%lu ", zbud_cumul_chunk_counts[i]);
570
		chunks += zbud_cumul_chunk_counts[i];
571
		total_chunks += zbud_cumul_chunk_counts[i];
572
		sum_total_chunks += i * zbud_cumul_chunk_counts[i];
573
		if (i == 21)
574
			total_chunks_lte_21 = total_chunks;
575
		if (i == 32)
576
			total_chunks_lte_32 = total_chunks;
577
		if (i == 42)
578
			total_chunks_lte_42 = total_chunks;
579
	}
580
	p += sprintf(p, "<=21:%lu <=32:%lu <=42:%lu, mean:%lu\n",
581
		total_chunks_lte_21, total_chunks_lte_32, total_chunks_lte_42,
582
		chunks == 0 ? 0 : sum_total_chunks / chunks);
583
	return p - buf;
584
}
585
#endif
586
587
/**********
588
 * This "zv" PAM implementation combines the TLSF-based xvMalloc
589
 * with lzo1x compression to maximize the amount of data that can
590
 * be packed into a physical page.
591
 *
592
 * Zv represents a PAM page with the index and object (plus a "size" value
593
 * necessary for decompression) immediately preceding the compressed data.
594
 */
595
596
#define ZVH_SENTINEL  0x43214321
597
598
struct zv_hdr {
599
	uint32_t pool_id;
600
	struct tmem_oid oid;
601
	uint32_t index;
602
	DECL_SENTINEL
603
};
604
605
static const int zv_max_page_size = (PAGE_SIZE / 8) * 7;
606
607
static struct zv_hdr *zv_create(struct xv_pool *xvpool, uint32_t pool_id,
608
				struct tmem_oid *oid, uint32_t index,
609
				void *cdata, unsigned clen)
610
{
611
	struct page *page;
612
	struct zv_hdr *zv = NULL;
613
	uint32_t offset;
614
	int ret;
615
616
	BUG_ON(!irqs_disabled());
617
	ret = xv_malloc(xvpool, clen + sizeof(struct zv_hdr),
618
			&page, &offset, ZCACHE_GFP_MASK);
619
	if (unlikely(ret))
620
		goto out;
621
	zv = kmap_atomic(page, KM_USER0) + offset;
622
	zv->index = index;
623
	zv->oid = *oid;
624
	zv->pool_id = pool_id;
625
	SET_SENTINEL(zv, ZVH);
626
	memcpy((char *)zv + sizeof(struct zv_hdr), cdata, clen);
627
	kunmap_atomic(zv, KM_USER0);
628
out:
629
	return zv;
630
}
631
632
static void zv_free(struct xv_pool *xvpool, struct zv_hdr *zv)
633
{
634
	unsigned long flags;
635
	struct page *page;
636
	uint32_t offset;
637
	uint16_t size;
638
639
	ASSERT_SENTINEL(zv, ZVH);
640
	size = xv_get_object_size(zv) - sizeof(*zv);
641
	BUG_ON(size == 0 || size > zv_max_page_size);
642
	INVERT_SENTINEL(zv, ZVH);
643
	page = virt_to_page(zv);
644
	offset = (unsigned long)zv & ~PAGE_MASK;
645
	local_irq_save(flags);
646
	xv_free(xvpool, page, offset);
647
	local_irq_restore(flags);
648
}
649
650
static void zv_decompress(struct page *page, struct zv_hdr *zv)
651
{
652
	size_t clen = PAGE_SIZE;
653
	char *to_va;
654
	unsigned size;
655
	int ret;
656
657
	ASSERT_SENTINEL(zv, ZVH);
658
	size = xv_get_object_size(zv) - sizeof(*zv);
659
	BUG_ON(size == 0 || size > zv_max_page_size);
660
	to_va = kmap_atomic(page, KM_USER0);
661
	ret = lzo1x_decompress_safe((char *)zv + sizeof(*zv),
662
					size, to_va, &clen);
663
	kunmap_atomic(to_va, KM_USER0);
664
	BUG_ON(ret != LZO_E_OK);
665
	BUG_ON(clen != PAGE_SIZE);
666
}
667
668
/*
669
 * zcache core code starts here
670
 */
671
672
/* useful stats not collected by cleancache or frontswap */
673
static unsigned long zcache_flush_total;
674
static unsigned long zcache_flush_found;
675
static unsigned long zcache_flobj_total;
676
static unsigned long zcache_flobj_found;
677
static unsigned long zcache_failed_eph_puts;
678
static unsigned long zcache_failed_pers_puts;
679
680
#define MAX_POOLS_PER_CLIENT 16
681
682
static struct {
683
	struct tmem_pool *tmem_pools[MAX_POOLS_PER_CLIENT];
684
	struct xv_pool *xvpool;
685
} zcache_client;
686
687
/*
688
 * Tmem operations assume the poolid implies the invoking client.
689
 * Zcache only has one client (the kernel itself), so translate
690
 * the poolid into the tmem_pool allocated for it.  A KVM version
691
 * of zcache would have one client per guest and each client might
692
 * have a poolid==N.
693
 */
694
static struct tmem_pool *zcache_get_pool_by_id(uint32_t poolid)
695
{
696
	struct tmem_pool *pool = NULL;
697
698
	if (poolid >= 0) {
699
		pool = zcache_client.tmem_pools[poolid];
700
		if (pool != NULL)
701
			atomic_inc(&pool->refcount);
702
	}
703
	return pool;
704
}
705
706
static void zcache_put_pool(struct tmem_pool *pool)
707
{
708
	if (pool != NULL)
709
		atomic_dec(&pool->refcount);
710
}
711
712
/* counters for debugging */
713
static unsigned long zcache_failed_get_free_pages;
714
static unsigned long zcache_failed_alloc;
715
static unsigned long zcache_put_to_flush;
716
static unsigned long zcache_aborted_preload;
717
static unsigned long zcache_aborted_shrink;
718
719
/*
720
 * Ensure that memory allocation requests in zcache don't result
721
 * in direct reclaim requests via the shrinker, which would cause
722
 * an infinite loop.  Maybe a GFP flag would be better?
723
 */
724
static DEFINE_SPINLOCK(zcache_direct_reclaim_lock);
725
726
/*
727
 * for now, used named slabs so can easily track usage; later can
728
 * either just use kmalloc, or perhaps add a slab-like allocator
729
 * to more carefully manage total memory utilization
730
 */
731
static struct kmem_cache *zcache_objnode_cache;
732
static struct kmem_cache *zcache_obj_cache;
733
static atomic_t zcache_curr_obj_count = ATOMIC_INIT(0);
734
static unsigned long zcache_curr_obj_count_max;
735
static atomic_t zcache_curr_objnode_count = ATOMIC_INIT(0);
736
static unsigned long zcache_curr_objnode_count_max;
737
738
/*
739
 * to avoid memory allocation recursion (e.g. due to direct reclaim), we
740
 * preload all necessary data structures so the hostops callbacks never
741
 * actually do a malloc
742
 */
743
struct zcache_preload {
744
	void *page;
745
	struct tmem_obj *obj;
746
	int nr;
747
	struct tmem_objnode *objnodes[OBJNODE_TREE_MAX_PATH];
748
};
749
static DEFINE_PER_CPU(struct zcache_preload, zcache_preloads) = { 0, };
750
751
static int zcache_do_preload(struct tmem_pool *pool)
752
{
753
	struct zcache_preload *kp;
754
	struct tmem_objnode *objnode;
755
	struct tmem_obj *obj;
756
	void *page;
757
	int ret = -ENOMEM;
758
759
	if (unlikely(zcache_objnode_cache == NULL))
760
		goto out;
761
	if (unlikely(zcache_obj_cache == NULL))
762
		goto out;
763
	if (!spin_trylock(&zcache_direct_reclaim_lock)) {
764
		zcache_aborted_preload++;
765
		goto out;
766
	}
767
	preempt_disable();
768
	kp = &__get_cpu_var(zcache_preloads);
769
	while (kp->nr < ARRAY_SIZE(kp->objnodes)) {
770
		preempt_enable_no_resched();
771
		objnode = kmem_cache_alloc(zcache_objnode_cache,
772
				ZCACHE_GFP_MASK);
773
		if (unlikely(objnode == NULL)) {
774
			zcache_failed_alloc++;
775
			goto unlock_out;
776
		}
777
		preempt_disable();
778
		kp = &__get_cpu_var(zcache_preloads);
779
		if (kp->nr < ARRAY_SIZE(kp->objnodes))
780
			kp->objnodes[kp->nr++] = objnode;
781
		else
782
			kmem_cache_free(zcache_objnode_cache, objnode);
783
	}
784
	preempt_enable_no_resched();
785
	obj = kmem_cache_alloc(zcache_obj_cache, ZCACHE_GFP_MASK);
786
	if (unlikely(obj == NULL)) {
787
		zcache_failed_alloc++;
788
		goto unlock_out;
789
	}
790
	page = (void *)__get_free_page(ZCACHE_GFP_MASK);
791
	if (unlikely(page == NULL)) {
792
		zcache_failed_get_free_pages++;
793
		kmem_cache_free(zcache_obj_cache, obj);
794
		goto unlock_out;
795
	}
796
	preempt_disable();
797
	kp = &__get_cpu_var(zcache_preloads);
798
	if (kp->obj == NULL)
799
		kp->obj = obj;
800
	else
801
		kmem_cache_free(zcache_obj_cache, obj);
802
	if (kp->page == NULL)
803
		kp->page = page;
804
	else
805
		free_page((unsigned long)page);
806
	ret = 0;
807
unlock_out:
808
	spin_unlock(&zcache_direct_reclaim_lock);
809
out:
810
	return ret;
811
}
812
813
static void *zcache_get_free_page(void)
814
{
815
	struct zcache_preload *kp;
816
	void *page;
817
818
	kp = &__get_cpu_var(zcache_preloads);
819
	page = kp->page;
820
	BUG_ON(page == NULL);
821
	kp->page = NULL;
822
	return page;
823
}
824
825
static void zcache_free_page(void *p)
826
{
827
	free_page((unsigned long)p);
828
}
829
830
/*
831
 * zcache implementation for tmem host ops
832
 */
833
834
static struct tmem_objnode *zcache_objnode_alloc(struct tmem_pool *pool)
835
{
836
	struct tmem_objnode *objnode = NULL;
837
	unsigned long count;
838
	struct zcache_preload *kp;
839
840
	kp = &__get_cpu_var(zcache_preloads);
841
	if (kp->nr <= 0)
842
		goto out;
843
	objnode = kp->objnodes[kp->nr - 1];
844
	BUG_ON(objnode == NULL);
845
	kp->objnodes[kp->nr - 1] = NULL;
846
	kp->nr--;
847
	count = atomic_inc_return(&zcache_curr_objnode_count);
848
	if (count > zcache_curr_objnode_count_max)
849
		zcache_curr_objnode_count_max = count;
850
out:
851
	return objnode;
852
}
853
854
static void zcache_objnode_free(struct tmem_objnode *objnode,
855
					struct tmem_pool *pool)
856
{
857
	atomic_dec(&zcache_curr_objnode_count);
858
	BUG_ON(atomic_read(&zcache_curr_objnode_count) < 0);
859
	kmem_cache_free(zcache_objnode_cache, objnode);
860
}
861
862
static struct tmem_obj *zcache_obj_alloc(struct tmem_pool *pool)
863
{
864
	struct tmem_obj *obj = NULL;
865
	unsigned long count;
866
	struct zcache_preload *kp;
867
868
	kp = &__get_cpu_var(zcache_preloads);
869
	obj = kp->obj;
870
	BUG_ON(obj == NULL);
871
	kp->obj = NULL;
872
	count = atomic_inc_return(&zcache_curr_obj_count);
873
	if (count > zcache_curr_obj_count_max)
874
		zcache_curr_obj_count_max = count;
875
	return obj;
876
}
877
878
static void zcache_obj_free(struct tmem_obj *obj, struct tmem_pool *pool)
879
{
880
	atomic_dec(&zcache_curr_obj_count);
881
	BUG_ON(atomic_read(&zcache_curr_obj_count) < 0);
882
	kmem_cache_free(zcache_obj_cache, obj);
883
}
884
885
static struct tmem_hostops zcache_hostops = {
886
	.obj_alloc = zcache_obj_alloc,
887
	.obj_free = zcache_obj_free,
888
	.objnode_alloc = zcache_objnode_alloc,
889
	.objnode_free = zcache_objnode_free,
890
};
891
892
/*
893
 * zcache implementations for PAM page descriptor ops
894
 */
895
896
static atomic_t zcache_curr_eph_pampd_count = ATOMIC_INIT(0);
897
static unsigned long zcache_curr_eph_pampd_count_max;
898
static atomic_t zcache_curr_pers_pampd_count = ATOMIC_INIT(0);
899
static unsigned long zcache_curr_pers_pampd_count_max;
900
901
/* forward reference */
902
static int zcache_compress(struct page *from, void **out_va, size_t *out_len);
903
904
static void *zcache_pampd_create(struct tmem_pool *pool, struct tmem_oid *oid,
905
				 uint32_t index, struct page *page)
906
{
907
	void *pampd = NULL, *cdata;
908
	size_t clen;
909
	int ret;
910
	bool ephemeral = is_ephemeral(pool);
911
	unsigned long count;
912
913
	if (ephemeral) {
914
		ret = zcache_compress(page, &cdata, &clen);
915
		if (ret == 0)
916
917
			goto out;
918
		if (clen == 0 || clen > zbud_max_buddy_size()) {
919
			zcache_compress_poor++;
920
			goto out;
921
		}
922
		pampd = (void *)zbud_create(pool->pool_id, oid, index,
923
						page, cdata, clen);
924
		if (pampd != NULL) {
925
			count = atomic_inc_return(&zcache_curr_eph_pampd_count);
926
			if (count > zcache_curr_eph_pampd_count_max)
927
				zcache_curr_eph_pampd_count_max = count;
928
		}
929
	} else {
930
		/*
931
		 * FIXME: This is all the "policy" there is for now.
932
		 * 3/4 totpages should allow ~37% of RAM to be filled with
933
		 * compressed frontswap pages
934
		 */
935
		if (atomic_read(&zcache_curr_pers_pampd_count) >
936
							3 * totalram_pages / 4)
937
			goto out;
938
		ret = zcache_compress(page, &cdata, &clen);
939
		if (ret == 0)
940
			goto out;
941
		if (clen > zv_max_page_size) {
942
			zcache_compress_poor++;
943
			goto out;
944
		}
945
		pampd = (void *)zv_create(zcache_client.xvpool, pool->pool_id,
946
						oid, index, cdata, clen);
947
		if (pampd == NULL)
948
			goto out;
949
		count = atomic_inc_return(&zcache_curr_pers_pampd_count);
950
		if (count > zcache_curr_pers_pampd_count_max)
951
			zcache_curr_pers_pampd_count_max = count;
952
	}
953
out:
954
	return pampd;
955
}
956
957
/*
958
 * fill the pageframe corresponding to the struct page with the data
959
 * from the passed pampd
960
 */
961
static int zcache_pampd_get_data(struct page *page, void *pampd,
962
						struct tmem_pool *pool)
963
{
964
	int ret = 0;
965
966
	if (is_ephemeral(pool))
967
		ret = zbud_decompress(page, pampd);
968
	else
969
		zv_decompress(page, pampd);
970
	return ret;
971
}
972
973
/*
974
 * free the pampd and remove it from any zcache lists
975
 * pampd must no longer be pointed to from any tmem data structures!
976
 */
977
static void zcache_pampd_free(void *pampd, struct tmem_pool *pool)
978
{
979
	if (is_ephemeral(pool)) {
980
		zbud_free_and_delist((struct zbud_hdr *)pampd);
981
		atomic_dec(&zcache_curr_eph_pampd_count);
982
		BUG_ON(atomic_read(&zcache_curr_eph_pampd_count) < 0);
983
	} else {
984
		zv_free(zcache_client.xvpool, (struct zv_hdr *)pampd);
985
		atomic_dec(&zcache_curr_pers_pampd_count);
986
		BUG_ON(atomic_read(&zcache_curr_pers_pampd_count) < 0);
987
	}
988
}
989
990
static struct tmem_pamops zcache_pamops = {
991
	.create = zcache_pampd_create,
992
	.get_data = zcache_pampd_get_data,
993
	.free = zcache_pampd_free,
994
};
995
996
/*
997
 * zcache compression/decompression and related per-cpu stuff
998
 */
999
1000
#define LZO_WORKMEM_BYTES LZO1X_1_MEM_COMPRESS
1001
#define LZO_DSTMEM_PAGE_ORDER 1
1002
static DEFINE_PER_CPU(unsigned char *, zcache_workmem);
1003
static DEFINE_PER_CPU(unsigned char *, zcache_dstmem);
1004
1005
static int zcache_compress(struct page *from, void **out_va, size_t *out_len)
1006
{
1007
	int ret = 0;
1008
	unsigned char *dmem = __get_cpu_var(zcache_dstmem);
1009
	unsigned char *wmem = __get_cpu_var(zcache_workmem);
1010
	char *from_va;
1011
1012
	BUG_ON(!irqs_disabled());
1013
	if (unlikely(dmem == NULL || wmem == NULL))
1014
		goto out;  /* no buffer, so can't compress */
1015
	from_va = kmap_atomic(from, KM_USER0);
1016
	mb();
1017
	ret = lzo1x_1_compress(from_va, PAGE_SIZE, dmem, out_len, wmem);
1018
	BUG_ON(ret != LZO_E_OK);
1019
	*out_va = dmem;
1020
	kunmap_atomic(from_va, KM_USER0);
1021
	ret = 1;
1022
out:
1023
	return ret;
1024
}
1025
1026
1027
static int zcache_cpu_notifier(struct notifier_block *nb,
1028
				unsigned long action, void *pcpu)
1029
{
1030
	int cpu = (long)pcpu;
1031
	struct zcache_preload *kp;
1032
1033
	switch (action) {
1034
	case CPU_UP_PREPARE:
1035
		per_cpu(zcache_dstmem, cpu) = (void *)__get_free_pages(
1036
			GFP_KERNEL | __GFP_REPEAT,
1037
			LZO_DSTMEM_PAGE_ORDER),
1038
		per_cpu(zcache_workmem, cpu) =
1039
			kzalloc(LZO1X_MEM_COMPRESS,
1040
				GFP_KERNEL | __GFP_REPEAT);
1041
		break;
1042
	case CPU_DEAD:
1043
	case CPU_UP_CANCELED:
1044
		free_pages((unsigned long)per_cpu(zcache_dstmem, cpu),
1045
				LZO_DSTMEM_PAGE_ORDER);
1046
		per_cpu(zcache_dstmem, cpu) = NULL;
1047
		kfree(per_cpu(zcache_workmem, cpu));
1048
		per_cpu(zcache_workmem, cpu) = NULL;
1049
		kp = &per_cpu(zcache_preloads, cpu);
1050
		while (kp->nr) {
1051
			kmem_cache_free(zcache_objnode_cache,
1052
					kp->objnodes[kp->nr - 1]);
1053
			kp->objnodes[kp->nr - 1] = NULL;
1054
			kp->nr--;
1055
		}
1056
		kmem_cache_free(zcache_obj_cache, kp->obj);
1057
		free_page((unsigned long)kp->page);
1058
		break;
1059
	default:
1060
		break;
1061
	}
1062
	return NOTIFY_OK;
1063
}
1064
1065
static struct notifier_block zcache_cpu_notifier_block = {
1066
	.notifier_call = zcache_cpu_notifier
1067
};
1068
1069
#ifdef CONFIG_SYSFS
1070
#define ZCACHE_SYSFS_RO(_name) \
1071
	static ssize_t zcache_##_name##_show(struct kobject *kobj, \
1072
				struct kobj_attribute *attr, char *buf) \
1073
	{ \
1074
		return sprintf(buf, "%lu\n", zcache_##_name); \
1075
	} \
1076
	static struct kobj_attribute zcache_##_name##_attr = { \
1077
		.attr = { .name = __stringify(_name), .mode = 0444 }, \
1078
		.show = zcache_##_name##_show, \
1079
	}
1080
1081
#define ZCACHE_SYSFS_RO_ATOMIC(_name) \
1082
	static ssize_t zcache_##_name##_show(struct kobject *kobj, \
1083
				struct kobj_attribute *attr, char *buf) \
1084
	{ \
1085
	    return sprintf(buf, "%d\n", atomic_read(&zcache_##_name)); \
1086
	} \
1087
	static struct kobj_attribute zcache_##_name##_attr = { \
1088
		.attr = { .name = __stringify(_name), .mode = 0444 }, \
1089
		.show = zcache_##_name##_show, \
1090
	}
1091
1092
#define ZCACHE_SYSFS_RO_CUSTOM(_name, _func) \
1093
	static ssize_t zcache_##_name##_show(struct kobject *kobj, \
1094
				struct kobj_attribute *attr, char *buf) \
1095
	{ \
1096
	    return _func(buf); \
1097
	} \
1098
	static struct kobj_attribute zcache_##_name##_attr = { \
1099
		.attr = { .name = __stringify(_name), .mode = 0444 }, \
1100
		.show = zcache_##_name##_show, \
1101
	}
1102
1103
ZCACHE_SYSFS_RO(curr_obj_count_max);
1104
ZCACHE_SYSFS_RO(curr_objnode_count_max);
1105
ZCACHE_SYSFS_RO(flush_total);
1106
ZCACHE_SYSFS_RO(flush_found);
1107
ZCACHE_SYSFS_RO(flobj_total);
1108
ZCACHE_SYSFS_RO(flobj_found);
1109
ZCACHE_SYSFS_RO(failed_eph_puts);
1110
ZCACHE_SYSFS_RO(failed_pers_puts);
1111
ZCACHE_SYSFS_RO(zbud_curr_zbytes);
1112
ZCACHE_SYSFS_RO(zbud_cumul_zpages);
1113
ZCACHE_SYSFS_RO(zbud_cumul_zbytes);
1114
ZCACHE_SYSFS_RO(zbud_buddied_count);
1115
ZCACHE_SYSFS_RO(zbpg_unused_list_count);
1116
ZCACHE_SYSFS_RO(evicted_raw_pages);
1117
ZCACHE_SYSFS_RO(evicted_unbuddied_pages);
1118
ZCACHE_SYSFS_RO(evicted_buddied_pages);
1119
ZCACHE_SYSFS_RO(failed_get_free_pages);
1120
ZCACHE_SYSFS_RO(failed_alloc);
1121
ZCACHE_SYSFS_RO(put_to_flush);
1122
ZCACHE_SYSFS_RO(aborted_preload);
1123
ZCACHE_SYSFS_RO(aborted_shrink);
1124
ZCACHE_SYSFS_RO(compress_poor);
1125
ZCACHE_SYSFS_RO_ATOMIC(zbud_curr_raw_pages);
1126
ZCACHE_SYSFS_RO_ATOMIC(zbud_curr_zpages);
1127
ZCACHE_SYSFS_RO_ATOMIC(curr_obj_count);
1128
ZCACHE_SYSFS_RO_ATOMIC(curr_objnode_count);
1129
ZCACHE_SYSFS_RO_CUSTOM(zbud_unbuddied_list_counts,
1130
			zbud_show_unbuddied_list_counts);
1131
ZCACHE_SYSFS_RO_CUSTOM(zbud_cumul_chunk_counts,
1132
			zbud_show_cumul_chunk_counts);
1133
1134
static struct attribute *zcache_attrs[] = {
1135
	&zcache_curr_obj_count_attr.attr,
1136
	&zcache_curr_obj_count_max_attr.attr,
1137
	&zcache_curr_objnode_count_attr.attr,
1138
	&zcache_curr_objnode_count_max_attr.attr,
1139
	&zcache_flush_total_attr.attr,
1140
	&zcache_flobj_total_attr.attr,
1141
	&zcache_flush_found_attr.attr,
1142
	&zcache_flobj_found_attr.attr,
1143
	&zcache_failed_eph_puts_attr.attr,
1144
	&zcache_failed_pers_puts_attr.attr,
1145
	&zcache_compress_poor_attr.attr,
1146
	&zcache_zbud_curr_raw_pages_attr.attr,
1147
	&zcache_zbud_curr_zpages_attr.attr,
1148
	&zcache_zbud_curr_zbytes_attr.attr,
1149
	&zcache_zbud_cumul_zpages_attr.attr,
1150
	&zcache_zbud_cumul_zbytes_attr.attr,
1151
	&zcache_zbud_buddied_count_attr.attr,
1152
	&zcache_zbpg_unused_list_count_attr.attr,
1153
	&zcache_evicted_raw_pages_attr.attr,
1154
	&zcache_evicted_unbuddied_pages_attr.attr,
1155
	&zcache_evicted_buddied_pages_attr.attr,
1156
	&zcache_failed_get_free_pages_attr.attr,
1157
	&zcache_failed_alloc_attr.attr,
1158
	&zcache_put_to_flush_attr.attr,
1159
	&zcache_aborted_preload_attr.attr,
1160
	&zcache_aborted_shrink_attr.attr,
1161
	&zcache_zbud_unbuddied_list_counts_attr.attr,
1162
	&zcache_zbud_cumul_chunk_counts_attr.attr,
1163
	NULL,
1164
};
1165
1166
static struct attribute_group zcache_attr_group = {
1167
	.attrs = zcache_attrs,
1168
	.name = "zcache",
1169
};
1170
1171
#endif /* CONFIG_SYSFS */
1172
/*
1173
 * When zcache is disabled ("frozen"), pools can be created and destroyed,
1174
 * but all puts (and thus all other operations that require memory allocation)
1175
 * must fail.  If zcache is unfrozen, accepts puts, then frozen again,
1176
 * data consistency requires all puts while frozen to be converted into
1177
 * flushes.
1178
 */
1179
static bool zcache_freeze;
1180
1181
/*
1182
 * zcache shrinker interface (only useful for ephemeral pages, so zbud only)
1183
 */
1184
static int shrink_zcache_memory(struct shrinker *shrink,
1185
				struct shrink_control *sc)
1186
{
1187
	int ret = -1;
1188
	int nr = sc->nr_to_scan;
1189
	gfp_t gfp_mask = sc->gfp_mask;
1190
1191
	if (nr >= 0) {
1192
		if (!(gfp_mask & __GFP_FS))
1193
			/* does this case really need to be skipped? */
1194
			goto out;
1195
		if (spin_trylock(&zcache_direct_reclaim_lock)) {
1196
			zbud_evict_pages(nr);
1197
			spin_unlock(&zcache_direct_reclaim_lock);
1198
		} else
1199
			zcache_aborted_shrink++;
1200
	}
1201
	ret = (int)atomic_read(&zcache_zbud_curr_raw_pages);
1202
out:
1203
	return ret;
1204
}
1205
1206
static struct shrinker zcache_shrinker = {
1207
	.shrink = shrink_zcache_memory,
1208
	.seeks = DEFAULT_SEEKS,
1209
};
1210
1211
/*
1212
 * zcache shims between cleancache/frontswap ops and tmem
1213
 */
1214
1215
static int zcache_put_page(int pool_id, struct tmem_oid *oidp,
1216
				uint32_t index, struct page *page)
1217
{
1218
	struct tmem_pool *pool;
1219
	int ret = -1;
1220
1221
	BUG_ON(!irqs_disabled());
1222
	pool = zcache_get_pool_by_id(pool_id);
1223
	if (unlikely(pool == NULL))
1224
		goto out;
1225
	if (!zcache_freeze && zcache_do_preload(pool) == 0) {
1226
		/* preload does preempt_disable on success */
1227
		ret = tmem_put(pool, oidp, index, page);
1228
		if (ret < 0) {
1229
			if (is_ephemeral(pool))
1230
				zcache_failed_eph_puts++;
1231
			else
1232
				zcache_failed_pers_puts++;
1233
		}
1234
		zcache_put_pool(pool);
1235
		preempt_enable_no_resched();
1236
	} else {
1237
		zcache_put_to_flush++;
1238
		if (atomic_read(&pool->obj_count) > 0)
1239
			/* the put fails whether the flush succeeds or not */
1240
			(void)tmem_flush_page(pool, oidp, index);
1241
		zcache_put_pool(pool);
1242
	}
1243
out:
1244
	return ret;
1245
}
1246
1247
static int zcache_get_page(int pool_id, struct tmem_oid *oidp,
1248
				uint32_t index, struct page *page)
1249
{
1250
	struct tmem_pool *pool;
1251
	int ret = -1;
1252
	unsigned long flags;
1253
1254
	local_irq_save(flags);
1255
	pool = zcache_get_pool_by_id(pool_id);
1256
	if (likely(pool != NULL)) {
1257
		if (atomic_read(&pool->obj_count) > 0)
1258
			ret = tmem_get(pool, oidp, index, page);
1259
		zcache_put_pool(pool);
1260
	}
1261
	local_irq_restore(flags);
1262
	return ret;
1263
}
1264
1265
static int zcache_flush_page(int pool_id, struct tmem_oid *oidp, uint32_t index)
1266
{
1267
	struct tmem_pool *pool;
1268
	int ret = -1;
1269
	unsigned long flags;
1270
1271
	local_irq_save(flags);
1272
	zcache_flush_total++;
1273
	pool = zcache_get_pool_by_id(pool_id);
1274
	if (likely(pool != NULL)) {
1275
		if (atomic_read(&pool->obj_count) > 0)
1276
			ret = tmem_flush_page(pool, oidp, index);
1277
		zcache_put_pool(pool);
1278
	}
1279
	if (ret >= 0)
1280
		zcache_flush_found++;
1281
	local_irq_restore(flags);
1282
	return ret;
1283
}
1284
1285
static int zcache_flush_object(int pool_id, struct tmem_oid *oidp)
1286
{
1287
	struct tmem_pool *pool;
1288
	int ret = -1;
1289
	unsigned long flags;
1290
1291
	local_irq_save(flags);
1292
	zcache_flobj_total++;
1293
	pool = zcache_get_pool_by_id(pool_id);
1294
	if (likely(pool != NULL)) {
1295
		if (atomic_read(&pool->obj_count) > 0)
1296
			ret = tmem_flush_object(pool, oidp);
1297
		zcache_put_pool(pool);
1298
	}
1299
	if (ret >= 0)
1300
		zcache_flobj_found++;
1301
	local_irq_restore(flags);
1302
	return ret;
1303
}
1304
1305
static int zcache_destroy_pool(int pool_id)
1306
{
1307
	struct tmem_pool *pool = NULL;
1308
	int ret = -1;
1309
1310
	if (pool_id < 0)
1311
		goto out;
1312
	pool = zcache_client.tmem_pools[pool_id];
1313
	if (pool == NULL)
1314
		goto out;
1315
	zcache_client.tmem_pools[pool_id] = NULL;
1316
	/* wait for pool activity on other cpus to quiesce */
1317
	while (atomic_read(&pool->refcount) != 0)
1318
		;
1319
	local_bh_disable();
1320
	ret = tmem_destroy_pool(pool);
1321
	local_bh_enable();
1322
	kfree(pool);
1323
	pr_info("zcache: destroyed pool id=%d\n", pool_id);
1324
out:
1325
	return ret;
1326
}
1327
1328
static int zcache_new_pool(uint32_t flags)
1329
{
1330
	int poolid = -1;
1331
	struct tmem_pool *pool;
1332
1333
	pool = kmalloc(sizeof(struct tmem_pool), GFP_KERNEL);
1334
	if (pool == NULL) {
1335
		pr_info("zcache: pool creation failed: out of memory\n");
1336
		goto out;
1337
	}
1338
1339
	for (poolid = 0; poolid < MAX_POOLS_PER_CLIENT; poolid++)
1340
		if (zcache_client.tmem_pools[poolid] == NULL)
1341
			break;
1342
	if (poolid >= MAX_POOLS_PER_CLIENT) {
1343
		pr_info("zcache: pool creation failed: max exceeded\n");
1344
		kfree(pool);
1345
		poolid = -1;
1346
		goto out;
1347
	}
1348
	atomic_set(&pool->refcount, 0);
1349
	pool->client = &zcache_client;
1350
	pool->pool_id = poolid;
1351
	tmem_new_pool(pool, flags);
1352
	zcache_client.tmem_pools[poolid] = pool;
1353
	pr_info("zcache: created %s tmem pool, id=%d\n",
1354
		flags & TMEM_POOL_PERSIST ? "persistent" : "ephemeral",
1355
		poolid);
1356
out:
1357
	return poolid;
1358
}
1359
1360
/**********
1361
 * Two kernel functionalities currently can be layered on top of tmem.
1362
 * These are "cleancache" which is used as a second-chance cache for clean
1363
 * page cache pages; and "frontswap" which is used for swap pages
1364
 * to avoid writes to disk.  A generic "shim" is provided here for each
1365
 * to translate in-kernel semantics to zcache semantics.
1366
 */
1367
1368
#ifdef CONFIG_CLEANCACHE
1369
static void zcache_cleancache_put_page(int pool_id,
1370
					struct cleancache_filekey key,
1371
					pgoff_t index, struct page *page)
1372
{
1373
	u32 ind = (u32) index;
1374
	struct tmem_oid oid = *(struct tmem_oid *)&key;
1375
1376
	if (likely(ind == index))
1377
		(void)zcache_put_page(pool_id, &oid, index, page);
1378
}
1379
1380
static int zcache_cleancache_get_page(int pool_id,
1381
					struct cleancache_filekey key,
1382
					pgoff_t index, struct page *page)
1383
{
1384
	u32 ind = (u32) index;
1385
	struct tmem_oid oid = *(struct tmem_oid *)&key;
1386
	int ret = -1;
1387
1388
	if (likely(ind == index))
1389
		ret = zcache_get_page(pool_id, &oid, index, page);
1390
	return ret;
1391
}
1392
1393
static void zcache_cleancache_flush_page(int pool_id,
1394
					struct cleancache_filekey key,
1395
					pgoff_t index)
1396
{
1397
	u32 ind = (u32) index;
1398
	struct tmem_oid oid = *(struct tmem_oid *)&key;
1399
1400
	if (likely(ind == index))
1401
		(void)zcache_flush_page(pool_id, &oid, ind);
1402
}
1403
1404
static void zcache_cleancache_flush_inode(int pool_id,
1405
					struct cleancache_filekey key)
1406
{
1407
	struct tmem_oid oid = *(struct tmem_oid *)&key;
1408
1409
	(void)zcache_flush_object(pool_id, &oid);
1410
}
1411
1412
static void zcache_cleancache_flush_fs(int pool_id)
1413
{
1414
	if (pool_id >= 0)
1415
		(void)zcache_destroy_pool(pool_id);
1416
}
1417
1418
static int zcache_cleancache_init_fs(size_t pagesize)
1419
{
1420
	BUG_ON(sizeof(struct cleancache_filekey) !=
1421
				sizeof(struct tmem_oid));
1422
	BUG_ON(pagesize != PAGE_SIZE);
1423
	return zcache_new_pool(0);
1424
}
1425
1426
static int zcache_cleancache_init_shared_fs(char *uuid, size_t pagesize)
1427
{
1428
	/* shared pools are unsupported and map to private */
1429
	BUG_ON(sizeof(struct cleancache_filekey) !=
1430
				sizeof(struct tmem_oid));
1431
	BUG_ON(pagesize != PAGE_SIZE);
1432
	return zcache_new_pool(0);
1433
}
1434
1435
static struct cleancache_ops zcache_cleancache_ops = {
1436
	.put_page = zcache_cleancache_put_page,
1437
	.get_page = zcache_cleancache_get_page,
1438
	.flush_page = zcache_cleancache_flush_page,
1439
	.flush_inode = zcache_cleancache_flush_inode,
1440
	.flush_fs = zcache_cleancache_flush_fs,
1441
	.init_shared_fs = zcache_cleancache_init_shared_fs,
1442
	.init_fs = zcache_cleancache_init_fs
1443
};
1444
1445
struct cleancache_ops zcache_cleancache_register_ops(void)
1446
{
1447
	struct cleancache_ops old_ops =
1448
		cleancache_register_ops(&zcache_cleancache_ops);
1449
1450
	return old_ops;
1451
}
1452
#endif
1453
1454
#ifdef CONFIG_FRONTSWAP
1455
/* a single tmem poolid is used for all frontswap "types" (swapfiles) */
1456
static int zcache_frontswap_poolid = -1;
1457
1458
/*
1459
 * Swizzling increases objects per swaptype, increasing tmem concurrency
1460
 * for heavy swaploads.  Later, larger nr_cpus -> larger SWIZ_BITS
1461
 */
1462
#define SWIZ_BITS		4
1463
#define SWIZ_MASK		((1 << SWIZ_BITS) - 1)
1464
#define _oswiz(_type, _ind)	((_type << SWIZ_BITS) | (_ind & SWIZ_MASK))
1465
#define iswiz(_ind)		(_ind >> SWIZ_BITS)
1466
1467
static inline struct tmem_oid oswiz(unsigned type, u32 ind)
1468
{
1469
	struct tmem_oid oid = { .oid = { 0 } };
1470
	oid.oid[0] = _oswiz(type, ind);
1471
	return oid;
1472
}
1473
1474
static int zcache_frontswap_put_page(unsigned type, pgoff_t offset,
1475
				   struct page *page)
1476
{
1477
	u64 ind64 = (u64)offset;
1478
	u32 ind = (u32)offset;
1479
	struct tmem_oid oid = oswiz(type, ind);
1480
	int ret = -1;
1481
	unsigned long flags;
1482
1483
	BUG_ON(!PageLocked(page));
1484
	if (likely(ind64 == ind)) {
1485
		local_irq_save(flags);
1486
		ret = zcache_put_page(zcache_frontswap_poolid, &oid,
1487
					iswiz(ind), page);
1488
		local_irq_restore(flags);
1489
	}
1490
	return ret;
1491
}
1492
1493
/* returns 0 if the page was successfully gotten from frontswap, -1 if
1494
 * was not present (should never happen!) */
1495
static int zcache_frontswap_get_page(unsigned type, pgoff_t offset,
1496
				   struct page *page)
1497
{
1498
	u64 ind64 = (u64)offset;
1499
	u32 ind = (u32)offset;
1500
	struct tmem_oid oid = oswiz(type, ind);
1501
	int ret = -1;
1502
1503
	BUG_ON(!PageLocked(page));
1504
	if (likely(ind64 == ind))
1505
		ret = zcache_get_page(zcache_frontswap_poolid, &oid,
1506
					iswiz(ind), page);
1507
	return ret;
1508
}
1509
1510
/* flush a single page from frontswap */
1511
static void zcache_frontswap_flush_page(unsigned type, pgoff_t offset)
1512
{
1513
	u64 ind64 = (u64)offset;
1514
	u32 ind = (u32)offset;
1515
	struct tmem_oid oid = oswiz(type, ind);
1516
1517
	if (likely(ind64 == ind))
1518
		(void)zcache_flush_page(zcache_frontswap_poolid, &oid,
1519
					iswiz(ind));
1520
}
1521
1522
/* flush all pages from the passed swaptype */
1523
static void zcache_frontswap_flush_area(unsigned type)
1524
{
1525
	struct tmem_oid oid;
1526
	int ind;
1527
1528
	for (ind = SWIZ_MASK; ind >= 0; ind--) {
1529
		oid = oswiz(type, ind);
1530
		(void)zcache_flush_object(zcache_frontswap_poolid, &oid);
1531
	}
1532
}
1533
1534
static void zcache_frontswap_init(unsigned ignored)
1535
{
1536
	/* a single tmem poolid is used for all frontswap "types" (swapfiles) */
1537
	if (zcache_frontswap_poolid < 0)
1538
		zcache_frontswap_poolid = zcache_new_pool(TMEM_POOL_PERSIST);
1539
}
1540
1541
static struct frontswap_ops zcache_frontswap_ops = {
1542
	.put_page = zcache_frontswap_put_page,
1543
	.get_page = zcache_frontswap_get_page,
1544
	.flush_page = zcache_frontswap_flush_page,
1545
	.flush_area = zcache_frontswap_flush_area,
1546
	.init = zcache_frontswap_init
1547
};
1548
1549
struct frontswap_ops zcache_frontswap_register_ops(void)
1550
{
1551
	struct frontswap_ops old_ops =
1552
		frontswap_register_ops(&zcache_frontswap_ops);
1553
1554
	return old_ops;
1555
}
1556
#endif
1557
1558
/*
1559
 * zcache initialization
1560
 * NOTE FOR NOW zcache MUST BE PROVIDED AS A KERNEL BOOT PARAMETER OR
1561
 * NOTHING HAPPENS!
1562
 */
1563
1564
static int zcache_enabled;
1565
1566
static int __init enable_zcache(char *s)
1567
{
1568
	zcache_enabled = 1;
1569
	return 1;
1570
}
1571
__setup("zcache", enable_zcache);
1572
1573
/* allow independent dynamic disabling of cleancache and frontswap */
1574
1575
static int use_cleancache = 1;
1576
1577
static int __init no_cleancache(char *s)
1578
{
1579
	use_cleancache = 0;
1580
	return 1;
1581
}
1582
1583
__setup("nocleancache", no_cleancache);
1584
1585
static int use_frontswap = 1;
1586
1587
static int __init no_frontswap(char *s)
1588
{
1589
	use_frontswap = 0;
1590
	return 1;
1591
}
1592
1593
__setup("nofrontswap", no_frontswap);
1594
1595
static int __init zcache_init(void)
1596
{
1597
#ifdef CONFIG_SYSFS
1598
	int ret = 0;
1599
1600
	ret = sysfs_create_group(mm_kobj, &zcache_attr_group);
1601
	if (ret) {
1602
		pr_err("zcache: can't create sysfs\n");
1603
		goto out;
1604
	}
1605
#endif /* CONFIG_SYSFS */
1606
#if defined(CONFIG_CLEANCACHE) || defined(CONFIG_FRONTSWAP)
1607
	if (zcache_enabled) {
1608
		unsigned int cpu;
1609
1610
		tmem_register_hostops(&zcache_hostops);
1611
		tmem_register_pamops(&zcache_pamops);
1612
		ret = register_cpu_notifier(&zcache_cpu_notifier_block);
1613
		if (ret) {
1614
			pr_err("zcache: can't register cpu notifier\n");
1615
			goto out;
1616
		}
1617
		for_each_online_cpu(cpu) {
1618
			void *pcpu = (void *)(long)cpu;
1619
			zcache_cpu_notifier(&zcache_cpu_notifier_block,
1620
				CPU_UP_PREPARE, pcpu);
1621
		}
1622
	}
1623
	zcache_objnode_cache = kmem_cache_create("zcache_objnode",
1624
				sizeof(struct tmem_objnode), 0, 0, NULL);
1625
	zcache_obj_cache = kmem_cache_create("zcache_obj",
1626
				sizeof(struct tmem_obj), 0, 0, NULL);
1627
#endif
1628
#ifdef CONFIG_CLEANCACHE
1629
	if (zcache_enabled && use_cleancache) {
1630
		struct cleancache_ops old_ops;
1631
1632
		zbud_init();
1633
		register_shrinker(&zcache_shrinker);
1634
		old_ops = zcache_cleancache_register_ops();
1635
		pr_info("zcache: cleancache enabled using kernel "
1636
			"transcendent memory and compression buddies\n");
1637
		if (old_ops.init_fs != NULL)
1638
			pr_warning("zcache: cleancache_ops overridden");
1639
	}
1640
#endif
1641
#ifdef CONFIG_FRONTSWAP
1642
	if (zcache_enabled && use_frontswap) {
1643
		struct frontswap_ops old_ops;
1644
1645
		zcache_client.xvpool = xv_create_pool();
1646
		if (zcache_client.xvpool == NULL) {
1647
			pr_err("zcache: can't create xvpool\n");
1648
			goto out;
1649
		}
1650
		old_ops = zcache_frontswap_register_ops();
1651
		pr_info("zcache: frontswap enabled using kernel "
1652
			"transcendent memory and xvmalloc\n");
1653
		if (old_ops.init != NULL)
1654
			pr_warning("ktmem: frontswap_ops overridden");
1655
	}
1656
#endif
1657
out:
1658
	return ret;
1659
}
1660
1661
module_init(zcache_init)

Return to bug 376325